Geotechnical Engineering Report Knik Arm Crossing, Mat-Su Access Route Point MacKenzie, Alaska

March 2007

Submitted To: PND Engineering, Inc. 1506 West 36th Avenue Anchorage, Alaska 99503

By:

Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 Phone: 907-561-2120 Fax: 907-561-4483 E-mail: <u>wsb@shanwil.com</u>

Project Number: 32-1-0153-003

Geotechnical Engineering Report Knik Arm Crossing, Mat-Su Access Route Point MacKenzie, Alaska

March 2007

Submitted To:

PND Engineering, Inc. 1506 West 36th Avenue Anchorage, Alaska 99503

HDR – Alaska 2525 C Street, Suite 305 Anchorage, Alaska 99503

By: Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 Phone: 907-561-2120 Fax: 907-561-4483 E-mail: <u>wsb@shanwil.com</u>

Project Number: 32-1-01536-003

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
2.0	SITE AND PROJECT DESCRIPTION	.1
	2.1 Site Description	.1
	2.2 Project Description	.2
3.0	GEOLOGICAL SETTING	
4.0	TECTONICS AND SEISMIC HAZARDS	.4
5.0	SUBSURFACE EXPLORATIONS	.5
6.0	LABORATORY TESTING	.5
7.0	SUBSURFACE CONDITIONS	
8.0	ENGINEERING RECOMMENDATIONS	.8
	8.1 Site Preparation	.9
	8.1.1 Ground Clearing/Stripping	.9
	8.1.2 Existing Roadway Preparation	
	8.1.3 Organic Subgrade Preparation	
	8.2 Excavation Considerations	11
	8.3 Embankment Construction	12
	8.4 Widening Existing Embankments	12
	8.5 Permanent Cut and Fill Slopes	
	8.6 Pavement Design	
	8.6.1 Road Pavement Sections	
	8.6.2 Frost Penetration Considerations	14
	8.7 Structural Fills and Compaction	
	8.8 Geosynthetics	15
	8.8.1 Geofabric	16
	8.8.2 Geogrid	
	8.9 Drainage	
9.0	CLOSURE AND LIMITATIONS	
REF	ERENCES	19

LIST OF FIGURES

- Figure 1 Vicinity Map
- Figure 2 Tectonics
- Figure 3 Gradation and Durability Requirements
- Figure 4 Sliver Fill Detail
- Figure 5 Springhead Drain Details

LIST OF APPENDICES

- Appendix A Plan and Profile Sheets/Boring Logs
- Appendix B Laboratory Test Procedures and Results
- Appendix C Important Information about Your Geotechnical Report

GEOTECHNICAL ENGINEERING REPORT KNIK ARM CROSSING, MAT-SU ACCESS ROUTE POINT MACKENZIE, ALASKA

1.0 INTRODUCTION

This report presents the results of a geotechnical study conducted for a road corridor accessing the west side of Knik Arm Crossing north of Anchorage, Alaska. The project involved investigating the proposed access route from the intersection of South Burma Road and Point MacKenzie Road to the proposed west abutment approach of the Knik Arm crossing. The general alignment of the access route is approximately 13 miles long and traverses both developed and undeveloped land. To characterize general subsurface conditions along the alignment and support preliminary engineering recommendations, Shannon & Wilson advanced ninety-three borings along the proposed new alignment of Point MacKenzie Road. Explorations were also conducted to evaluate the potential of a localized gravel borrow source at several proposed quarry locations along or near the project alignment.

Authorization to proceed with this work was received from Mr. Doug Kenley, of PND Engineering, Inc. via email. This work was conducted in accordance with our February 2006 proposal.

2.0 SITE AND PROJECT DESCRIPTION

The Knik Arm Crossing Project is intended to provide a connection between the west and east shore of the Knik Arm. The proposed Mat-Su access route (Point MacKenzie Alignment) extending through the Matanuska-Susitna Borough to the crossing, generally follows the developed corridor of the existing Point MacKenzie Road with approximately 3.5 miles of new roadway. The general corridor of the proposed Point MacKenzie Alignment is shown in Figure 1.

2.1 <u>Site Description</u>

Point MacKenzie, located in Southcentral Alaska, is approximately 3 miles northwest of Anchorage across the Knik Arm of Upper Cook Inlet. Knik Arm is an approximately 34 mile long narrow water body that is orientated approximately northeast by southwest. It is 1.6- to 5-miles wide and is characterized by strong currents, deep water, and large tide swings, as well as strong winds, winter storms, and sea ice.

The proposed Point MacKenzie Alignment connecting to the Knik Arm Crossing largely entails an upgrade of the existing Point MacKenzie Road as well as approximately 3.5 miles of new roadway through previously undeveloped land. The project begins at the southern most extent of pavement on Point MacKenzie Road, near the intersection of Point MacKenzie Road and South Burma Road (see Figure 1). The northern portion of the gravel road (South Burma Road) leads to Big Lake while the southern portion is Point MacKenzie Road leading to Port MacKenzie approximately 20 miles from the intersection.

2.2 **Project Description**

The Knik Arm Crossing, Mat-Su Access Route is part of a project to update and extend the existing Point MacKenzie Road system to connect to the proposed bridge crossing Knik Arm approximately 4 miles north of Point MacKenzie, Alaska. The goal of this project is to provide an improved infrastructure linking Anchorage, Alaska with the Matanuska-Susitna valley.

Much of the existing infrastructure in Point MacKenzie consists of a gravel road with multiple trailheads accessing occasional farms and the Mat-Su Borough's Port MacKenzie Dock. While the roadway adequately met the needs of the private residence and recreational users to date, it will need to be improved to meet Alaska Department of Transportation & Public Facilities (DOT&PF) standards as well as the increased traffic expected when the bridge is built.

The Point MacKenzie Alignment project focuses on the approximately 10 miles of roadway south from the intersection of South Burma Road to the north and Point MacKenzie Road. Additionally, an approximately 3.5 mile stretch of new roadway is proposed though undeveloped land. The most significant improvements planned for the undeveloped area are large cut/fill zones (approximately 20 to 30 feet) as well as increasing/decreasing road grades along centerline in a few areas. Improving the existing Point MacKenzie Road subgrade, in areas where the existing road will make deep cuts or where deep (approximately 10 to 20 feet thick) surface organics are present, is also a major part in this project.

The new alignment of Point MacKenzie Road is proposed to cross marshy areas (i.e. Stations 290+00 to 296+00 and Stations 415+00 to 442+00) where organic material may be present to depths of approximately 20 feet. A number of large hills are present along the alignment (i.e. Stations 163+00 to 182+00 and Stations 555+00 to 575+00), which would require cuts deeper than 30 feet. In addition to the deep (greater than 20 feet) cuts, numerous less pronounced hills are present and will require cuts. At the time of explorations, it was not observed that the

alignment crosses well defined flowing streams, however due to snow cover and frozen ground, less defined streams may be present along the alignment.

3.0 GEOLOGICAL SETTING

This project lies within the northern reaches of the Cook Inlet Basin, which is a low-lying structural trough overlying Tertiary rock formations and surrounded by Quaternary deposits of varying densities. These rocks consist of interbedded shale and sandstones with coal beds and are exposed closest to the study area along Eagle River, west of the Border Ranges fault, and more extensively in the Matanuska Valley and on the Kenai Peninsula (Magoon et al. 1976; Winkler 1992). Geophysical surveys across Knik Arm and oil exploration wells drilled in the area indicate that bedrock is likely deeper than 600 to 1,000 feet in the project vicinity (HLA 1983; Golder 2003; Shannon & Wilson 2004).

The topography of the area surrounding the project is the result of past glacial activity. Knik Arm has experienced at least five glacial events in the last 2 to 3 million years (Karlstrom 1964). The most recent events include the Knik Glaciation and the Naptowne Glaciation, both of which occurred within the past 75,000 years. During the Knik Glaciation (30,000 to 75,000 years ago), thick sequences of sediment, known as the Knik Ground Moraine, were deposited as glaciers retreated. Within the study area, these deposits extend from Eagle River valley to Point MacKenzie and Point Woronzof, and lie mostly below sea level. The deposits generally consist of poorly sorted till sediment deposited by glacial ice (Karlstrom, 1964; Mat-Su Borough, 1995).

The Naptowne Glaciation (11,000 to 30,000 years ago) is responsible for the majority of glacial deposits currently encountered in the Knik Arm and Point MacKenzie. At its maximum, the Naptowne Glaciation extended across the Anchorage Bowl area from the north and terminated at Point Woronzof and Point Campbell (Reger and Pinney, 1997). The Bootlegger Cove Formation was formed during this time in ice-free areas of the Susitna River valley, lower Knik Arm, and Upper Cook Inlet (Reger et al., 1995). Bootlegger Cove sediments generally consist of estuarine, marine, and lacustrine clays and silts with lesser amounts of sand and scattered pebbles and cobbles (Schmoll et al. 1984; Updike and Carpenter, 1986).

Overlying the Bootlegger Cove Formation clays are sand and gravel glacial deposits, including the Naptowne Outwash and the Elmendorf Moraine. Approximately 14,000 years ago, the Elmendorf Moraine was formed at the terminus of the Knik-Matanuska glacial lobe and is now a prominent topographic feature on both sides of the Knik Arm. The Elmendorf Moraine consists of a wide variety of poorly sorted sediments and stretches across Elmendorf Air Force Base from about Cairn Point northeast to the town of Eagle River. On the west side of Knik Arm, the Elmendorf Moraine arcs north from Point MacKenzie towards Wasilla and Big Lake. The retreat of ice, following deposition of Elmendorf Moraine, left behind ground moraine, kame fields, kame terraces, and abandoned channels on both sides of Knik Arm (Karlstrom 1964; Reger et al. 1995). As described above, a portion of the moraine has been eroded by the tidal influxes of the Knik Arm, which formed in response to a worldwide rise in sea level because of retreating glaciers.

The Naptowne Outwash is a flat sprawling apron of glaciofluvial sediment that overlies much of the Bootlegger Cove Formation on both the east and west sides of the Knik Arm. This material was deposited by large braided stream channels that contained sand and gravel and flowed from the Knik-Matanuska glacier. These sediments were subject to constant reworking by the glacial runoff and consist of a variety of sorted sediment that has been deposited in front of the Elmendorf Moraine.

Surface soils along the northern part of the Point MacKenzie alignment are typically welldrained and consist of silt over gravelly sand. Soils along the southern part of the Point MacKenzie alignment consist of a mixture of well drained and poorly drained soils, all of which were derived from glaciofluvial and glaciolacustrine plains, hills, and depressions left behind by the Naptowne Glaciation. These soils are typically composed of sandy silts over stratified sandy, silty clays, gravelly silty clays, sand and gravelly sand, or gravelly sandy to cobbly silts.

Ash fall within Southcentral Alaska has not been recorded as occurring in thick units. During the 1989-1990 eruption of Mount Redoubt, approximately 3 inches of ash fell over the Anchorage area (AVO). In 1992, Mount Spurr erupted with a subsequent ash fall of approximately 3 millimeters (USGS 2002).

4.0 TECTONICS AND SEISMIC HAZARDS

The Upper Cook Inlet region is one of the most seismically active areas in the United States and historically subjected to large (greater than 6.0 Magnitude) earthquakes. Alaska experiences approximately 24,000 earthquakes of any given magnitude per year, which accounts for 52 percent of all the earthquakes in the United States (AEIC).

The tectonics and seismicity of southern Alaska are the result of ongoing relative motion between two lithospheric plates; the Pacific Plate moves about 5 to 6 centimeters per year (cm/yr) northwestward relative to the North American Plate. The margin of convergence between the plates is the subduction zone and is marked on the surface by the Aleutian trench, southeast of Anchorage. Active seismicity in southcentral Alaska occurs as both deep earthquakes associated with the subduction zone, as well as shallow earthquakes associated with long linear transform faults and smaller fault-cored fold structures (Figure 2).

5.0 SUBSURFACE EXPLORATIONS

Shannon & Wilson conducted geotechnical explorations to evaluate the subsurface conditions that would likely be encountered during construction of the road improvement project. In total, 93 borings were completed. In general, one boring was advanced approximately every 1,000 feet along the existing Point MacKenzie Road and the undeveloped portion of the alignment except in areas where deep cuts were to be made or where peat deposits were expected. The approximate locations of the borings are presented on the plan and profile sheets in Appendix A.

In addition to the road improvement subsurface investigation, a gravel burrow source investigation was also conducted. Seven borings were advanced in areas that could be potentially developed as gravel sources to estimate the suitability of soils in these areas for use in the construction of this project. The locations of these gravel source areas are shown in Appendix A, Figure A-97 and on the Plan and Profile Sheets (where possible) presented as Figure A-3. The boring logs for these explorations are also included in Appendix A as Figures A-98 through A-104.

6.0 LABORATORY TESTING

Laboratory tests were performed on select soil samples from the borings to estimate the physical characteristics and engineering properties of soils encountered. The laboratory testing program on the soils was formulated with special emphasis on the characterization of native and existing soils for road construction. Additionally, index tests namely moisture contents, gradation and Atterberg limits were conducted to better establish the behavior characteristics of these soils. The parameters from these tests, combined with visual examination of sample consistency during drilling, the penetration resistance values from the Standard Penetration tests, and other field measurements provide the information needed for our preliminary engineering analysis of the soils.

Results of the soil tests performed on samples from each boring as well as results of laboratory analysis of the gravel source investigations are presented in Appendix B, along with a brief

description of each test. The results of these tests have been used to estimate the physical characteristics of the major soil units discussed in Section 7.

7.0 SUBSURFACE CONDITIONS

Subsurface conditions at each boring site are presented graphically in the boring logs presented in Appendix A (Figures A-4 through A-96) and as stick logs on the Plan and Profile Sheets (Figure A-3). Our borings encountered a range of soil types from existing fill material to native soils and organics (peat).

Existing Fills

The majority of the borings advanced along the existing road encountered slightly silty to silty, sandy gravel fill material in the upper 5 feet within the existing road prism. According to laboratory testing, the fines content of this type of fill generally ranged from 10 and 14 percent. Periodically, our borings encountered slightly silty to silty, gravelly sand fill soils within the existing road prism with fines content generally ranging from 8 and 31 percent. Occasionally, significantly silty fills were encountered with fines as high as 40 percent. Moisture contents for the encountered fill materials ranged from 0.5 to 21.1 percent with an average of approximately 3 percent. The existing fill was frozen at the time of our explorations and is assumed to have a relative density of medium dense to dense.

Granular Native Soils

Explorations along the existing road encountered native slightly silty to silty, sandy gravel and slightly silty to silty, gravelly sand. Fines content ranged from 6 to 9 percent for the gravel and 4 to 20 percent for the sand. Occasionally, sandy silty gravels with approximately 40 percent fines were encountered as well as gravelly, silty sands containing approximately 31 to 48 percent fines.

During the explorations along the undeveloped portion of the proposed alignment, slightly silty to silty sandy gravels and slightly silty to silty gravelly sands were generally encountered below the surface organics. Fine contents were approximately 25 percent in the gravels and ranged from 11 to 27 percent in the sands. Occasionally, slightly gravelly, silty sand was encountered with fines of 29 to 44 percent.

Moisture contents for the sandy material ranged from 2.7 to 30.9 percent with an average of approximately 9 percent. The gravel soils moisture content ranged from 1.2 to 12.8 percent with

an average of approximately 5 percent. Relative densities for the coarse-grained material encountered ranged from loose to very dense and was most commonly dense.

Fine Grained Native Soils

Silts and clays were encountered throughout the project area and at varying depths. Along the existing road, silt and clay layers were encountered anywhere from 0 to 30 feet below the ground surface (bgs) with varying thicknesses. Most of these soils also contained sands and gravels. Occasionally, organic material was found intermixed with the silts and/or clays. Moisture contents for the fine-grained soils encountered ranged from 8.2 to 54.8 percent with an average of approximately 20 percent. The consistency of the fine-grained soils encountered ranged from soils enco

The plasticity of the encountered fine-grained soils varies widely across the project area. Based on laboratory tests, the clay soils encountered contained plasticity indexes of approximately 10. The plasticity indices of the silt soils encountered was typically about 4. Non-plastic clays and silts were also encountered.

Peat/Organic Rich Soils

Organics (peat) were encountered in borings advanced through marshy areas as well as a number of borings along the existing road. Peat was identified below the road prism in Borings B-020, B-028, B-034, B-045, B-047, B-049, and B-051. This organic layer was encountered at depths ranging from 4 to 16 feet bgs below the road with thicknesses from 1 to 8 feet.

The swamp located between Stations 415+00 and 438+00 contained three borings (B-046, B-048, and B-050) located off the existing road. These borings encountered peat at ground surface to between 3 and 8 feet bgs. Boring B-048 encountered peat from 11.4 to 20.1 feet bgs. Borings B-068, B-071, B-073, B-079, B-081, B-085, B-086, and B-087 were advanced along the undeveloped alignment and encountered peat from the surface to approximately 2 feet bgs.

Borings B-048 and B-091 encountered a unique layer of soft organic silt/clay at approximately 20 and 26 feet bgs, respectively. The silt/clay was approximately 3 to 5 feet thick and contained scattered crustacean shells. Moisture contents for the layers encountered were between 166 and 195 percent. Atterberg limits on the silt/clay estimated plastic indexes of approximately 126 and 103, respectively. The silt/clay was not encountered in adjacent borings, however it may exist between sample intervals.

Gravel Source

Borings X-1 through X-4 encountered gravelly sand with fines content ranging from 16 to 32 percent. The gravel content in the gravelly sand portion of Borings X-1 through X-4 ranged from 26 to 47 percent. In addition to the gravelly sand, gravelly silts were also encountered. Gravel content in the silts from Borings X-1 through X-4 ranged from 12 to 15 percent. Boring X-4 also encountered silty sand with a fines content of 16 percent.

Borings X-6 through X-8 encountered silty sands, sandy silts, and sandy clays. The fine content of the sands was estimated at between 40 and 50 percent. Minor gravel was encountered in these borings.

Groundwater

Groundwater was found in a number of borings along the proposed alignment and at varying depths. The depth groundwater was encountered is noted on the appropriate boring log (presented in Appendix A) along with the date of drilling.

8.0 ENGINEERING RECOMMENDATIONS

The focus of the project is to realign and widen the Port MacKenzie access route. Based on the results of our field explorations, the corridor traverses a wide variety of terrain and soil conditions. This report presents generalized recommendations on a preliminary basis and it is our opinion that the information contained herein should be used for planning purposes only. We recommend additional explorations be conducted along the corridor and at the quarry sites prior to final design to provide subsurface coverage consistent with the ADOT&PF October 2003, *Engineering Geology & Geotechnical Exploration Procedures Manual*.

Preliminary recommendations provided in this report address major aspects of the project such as subgrade preparation, embankment development, and pavement section construction. We also provide general discussion of issues related to settlement, drainage, seismic considerations, and structural fill characteristics and usage. The goal of the recommendations is to assist you in developing a preliminary design that can be used to plan logistics, costs, and schedules for construction of the new roadway.

8.1 <u>Site Preparation</u>

Before construction of the road improvements occur, several steps will need to be taken in order to prepare the existing features. The recommendations outlined below should take place before fill placement in embankments and for pavement section development. Site preparation activities generally include clearing and grubbing or stripping, excavating for cuts or sub-cutting organic surface soils, and preparing the existing roadway or other fill surfaces for fill cover.

8.1.1 Ground Clearing/Stripping

Vegetation and surface organics will need to be removed from portions of the corridor that are not currently developed for the existing Port MacKenzie Road. Surfaces that will eventually receive fill should be stripped of vegetation (grass, shrubs, trees, etc.), the upper layer of organics (peat, organic silt, etc.), and soft or compressible soil if present. According to our borings along the alignment, the surface organics are largely comprised of dark brown, organic silt and peat soil containing roots and decayed plant matter and generally varies from 1 to 2 feet thick in areas that have not been developed. This soil is frost susceptible and/or compressible and is generally unsuitable, in our opinion, within the active frost zone beneath an arterial pavement. Therefore, we recommend that this layer be removed and disposed. The exposed surface should be smoothed with scraping equipment and tracked to ensure a smooth, consistent base for new fill. Due to the silt content in much of the soil encountered in our borings, we believe silty, native soils will be sensitive to water and disturbance caused by construction traffic. Therefore, advanced drainage considerations should be made in topographically low areas to limit the collection of surface water. In areas where the roadway will not be constructed over thick peat deposits and subgrade soils contain more than approximately 30 percent silt, we recommend installing a non-woven separation geofabric to create a barrier preventing siltation of fills placed on top of these exposed native soils. Specifications and considerations for geotextile use are presented later in Section 8.8.

Note that we did encounter areas where surface deposits of peat and/or ash were greater than 20 feet thick. Depending on the peat thickness and the desired performance of the roadway, thick sections of peat may be excavated prior to road fill placement. Construction over a peat subgrade is discussed in further detail in Section 8.1.3. In sub-cutting to remove peat and ash soils, the excavation should be extended laterally from the roadway centerline far enough to allow development of fill slopes at slopes not steeper than 1.5 horizontal (H) to 1 vertical (V) below the existing ground surface. The material should be removed so that firm, native, mineral soils are exposed over the entire excavation bottom. We believe the exposed soils at the bottom

of the excavation will likely be moisture sensitive and flat-nosed excavator buckets should be used. Additionally, equipment should not be operated on the exposed subgrade prior to fill placement. Woven separation geofabric should be placed on the excavation bottom and an initial, 2-foot lift of Select Material Type A fill should be pushed into place over the geofabric and tracked or rolled with a static drum for compaction. Above the geofabric and initial lift of fill, embankment development may commence as described in Section 8.3.

8.1.2 Existing Roadway Preparation

Much of the alignment is located on or adjacent to the existing Port MacKenzie Road and some preparation of the existing grade will be required before filling. First, the upper 6 inches of exposed fill material should also be removed in areas where the existing road prism materials are to remain in place. Other areas will require cutting deeper into the existing fills or potentially removing them completely in areas where the road was developed over organic soils. In cases where the road material is left in place, the exposed grade after removing the upper 6 inches of fill should be graded and compacted with a static drum roller or tracked equipment. We also recommend these areas be inspected by an experienced geotechnical engineer to detect loose or soft zones. These areas should be excavated and replaced with compacted, Select Material Type A (see gradation requirements in Figure 3). They may also be "healed" with geogrid reinforcement. Ultimately, the exposed surfaces of existing road grade to receive additional fills should be smooth and relatively compact prior to embankment or structural section development.

8.1.3 Organic Subgrade Preparation

In areas where peat was encountered in thick, saturated layers, it may not be practical to excavate all of the peat from beneath the new embankment. We recommend excavating and rebuilding existing embankments that would be included within the new roadway alignment and that have been constructed over peat subgrade. It is important to note that similar, more isolated areas may also exist at many other locations along the alignment that were not encountered by our borings. In developing embankments in these areas, the existing grade should be prepared by disturbing the organic surface as little as possible. Trees and shrubs should be cut approximately 6 inches above the ground surface, leaving the surface mat largely intact. Woven geofabric should then be spread over the footprint of the new embankment in preparation for the new fill.

While the exact details of the embankment configuration should be determined in final design, we recommend that at least the bottom 5 feet of embankment constructed over an organic subgrade consist of Select Material Type A and a double layer of biaxial geogrid. An initial 2-

foot lift of Select Material A should be placed and compacted as recommended in Section 8.7, followed by a layer of geogrid, an additional 1-foot thick layer of Select Material Type A, another layer of geogrid and then 2 additional feet of Select Material Type A. Fill material placed above the initial 2-foot lift may be placed and compacted using conventional vibratory equipment. Recommended Geogrid specifications are provided in Section 8.8. The goal of the double geogrid layer and higher quality fill near the bottom of the embankment is to reinforce and bridge over softer areas to achieve more uniform settlement over the entire embankment over these sections. Depending on the consistency of the subgrade and height of the embankment, settlement can be expected to be on the order of 10 to 20 percent of the organic layer thickness over the life of the roadway. Embankments can then be developed up to the bottom of the road prism described in Section 8.6. We recommend that where this embankment section is used, it be extended at least 100 feet longitudinally to provide a smoother transition between soft subgrade and surrounding, firm subgrade.

8.2 Excavation Considerations

The plan and profile sheets indicate that cuts associated with this project will generally be less than 40 feet in depth. We believe conventional earthmoving equipment will likely be used in conducting cut excavations for this project. Because of the depositional environment of the area, the contractor should plan on encountering large boulders occasionally in excavations along the alignment.

When excavating existing embankment materials and native soils, the disturbance will likely cause the soils to swell, effectively decreasing the bulk density of the excavated material when compared to in-place density. Blow count values may be used to estimate in-place densities, however, it is clearly a gross estimation as the soil types are variable and blow count values are controlled by more than soil density (i.e. the presence of larger gravel, etc.). Additionally, blow count values collected from the prism materials represent frozen conditions and do not reflect the condition of existing fill materials in their thawed state. Since no in-place or disturbed density tests were performed on any of the soils, swell factors can only be estimated using the limited density estimations provided by the blow count data and professional judgment.

Primarily silty soils ranged from soft to stiff and the more granular native soils found generally ranged from medium dense to very dense. In our opinion, there was no indication from the borings that the native soils were overconsolidated. The following table presents the estimated ranges of swelling factors due to excavation for the three major soil type encountered by the ADOT&PF explorations.

Soil Type	Potential Swell Factors
Native Silts and Clays	1.1 - 1.7
Native Silts and Clays with Sand and Gravel	1.2 - 1.6
Native Sand and Gravel	1.2 - 1.5
In-Place Granular Fills	1.3 – 1.5

In our opinion, excavated existing fills that will be reused as structural fill will likely recompact to a density comparable to its present condition, with proper moisture control. Therefore, we believe the overall shrink/swell factor for in-place structural fill materials is negligible.

8.3 Embankment Construction

Prior to embankment fill development, some subgrade preparation will be required as outlined in Section 8.1. Structural fills (Select Material Type C or better) may then be placed on the smooth, unyielding surface as outlined in Section 8.7. We recommend that fill placed in embankments for this project should be well blended to provide a relatively consistent material. Fill placed in embankments should be compacted as outlined in Section 8.7. If Select Material Type C is used for this project, isolated areas of embankment fill may prove difficult to compact due to excess moisture and high silt content. If encountered, these areas may be "healed" by excavating and replacing with free draining material or with geogrid reinforcement. Embankment fills should be developed to top of subgrade elevation, where the recommended road structural section should be constructed.

8.4 <u>Widening Existing Embankments</u>

Widening existing embankments will likely be required where the new road alignment is near or on the centerline of the existing roadway. Adding fill to the side of an existing embankment will create sliver fills that are typically difficult to compact. It should be noted that subgrade preparation described above should be used in developing these new embankments as well. Also, if the existing roadway is construction over peat subsoils, it is likely that the existing embankment will need to be removed along with the peat and an entire new embankment will then be constructed.

Sliver fills are roughly defined as narrow fills that essentially widen an existing embankment fill. In cross section, these fills are in the shape of narrow wedges on one or both sides of an existing fill or create a road or trail on an existing slope. When designing and constructing these types of fills, it is important to address the stability and quality of the new embankment and its conformity to the fills that already exist. Frequently, sliver fills are constructed by simply side casting and bulking new material over the edge of an existing embankment. While the embankment is widened, this technique does not allow for adequate compaction of new soils. It also causes an unconformity at the new/old embankment interface, which is often a plane of weakness that can spawn future slope failure and differential settlement under loading. We recommend that new "sliver" fills be keyed into the existing embankment slopes using 3 to 4-foot high benches to allow for a stable joining of new and old fills, and to encourage good compaction of the new embankment materials. Keying in the new fills will create a stair-stepped interface between new and old fills in cross section as shown in Figure 4.

8.5 <u>Permanent Cut and Fill Slopes</u>

Soil slopes created by embankment fills and cut sections along the alignment should be constructed to a maximum 2H to 1V. From a constructability standpoint, the contractor should be prepared to deal with spring water released while excavating cut slopes and also protection of silt exposures in cut slopes from sheet erosion or rilling. To accomplish this, we recommend constructing spring head drains in areas of persistent seepage to intercept the groundwater with a horizontal trench drain on the slope face and a downslope trench drain to carry the water to the drainage ditch adjacent to the new road. Trench drains should consist of 2 to 4 foot wide trenches filled with crushed aggregate ³/₄ to 2 inches in diameter. Lastly, the slopes should be seeded to establish vegetation before the end of the construction season. We do not recommend spreading topsoil on embankment or cut slopes as this allows the build-up of hydrostatic pressure and increases the chances for surface "pop-outs" or slumping during spring melt periods.

8.6 Pavement Design

Design of new pavements should consider the bearing support capabilities of the underlying soils at the subgrade level as well as the subgrade moisture content and frost susceptibility. These factors affect pavement section performance including expected settlements and potential seasonal heaving. In general, existing fills found along the corridor are frost susceptible ranging from F2 to F3. Granular native soils encountered in our borings varied significantly from non-frost susceptible sands and gravels to frost susceptible silty sand and silty gravel.

8.6.1 Road Pavement Sections

Assuming the pavement section was to be built directly on the frost susceptible (F3) native soils, existing fill soils, or new Select Material Type C fill, we recommend that the pavement section be made 40 inches thick and consist of the materials and layering shown in the below table.

Layer Thickness (inches)	Material Type
2	Asphalt Concrete
4	Asphalt Treated Base
16	Select Material, Type A
18	Select Material, Type B

It should be noted that some areas of the alignment will be constructed over relatively competent, non-frost susceptible (NFS or F1) soils. In these areas (typically those with native soils containing less than 6 percent fines) the bottom layer of Select Material Type B may be removed from the recommended section. Further explorations are needed to better define the extents of non-frost susceptible soils along the project corridor. Structural fill materials placed and compacted for this project should be done so as described in Section 8.7. Select Material, Type A placed in the upper 16 inches of the new road prism should have a maximum grain size of 3 inches to accommodate requirements of the asphalt treated base layer.

8.6.2 Frost Penetration Considerations

A frost penetration estimation has been conducted on the above 40 inch recommended pavement section. Given the general climatic conditions of the area and assuming that the 40 inch pavement section is constructed directly on the silty native soils, we believe that frost will penetrate approximately 2.5 feet into the subgrade during winter months. It is our opinion that said frost penetration will cause heaving at the road surface, however, it is likely that it will be relatively uniform given the general uniformity of the local native soils. Since a certain amount of heave is expected, we also believe that the subgrade will be weakened for a certain amount of time in the spring when the subgrade thaws, making reduced axle load limits on the road necessary.

If reducing axle load limits on the roadway is not desirable, we recommend increasing the above 40 inch section to 64 inches by increasing the Type A subbase layer to 40 inches over zones of frost susceptible soils (F3 and F4). This will decrease the amount of frost penetration into the subgrade significantly. In our opinion, this section will provide enough protection such that reduced axle loads should not be necessary to protect the driving surface during the spring months. Note that additional explorations should be conducted to better define the limits of frost susceptible subgrade soils along the project corridor.

8.7 <u>Structural Fills and Compaction</u>

We recommend that unclassified material placed during the construction of this project (i.e., non-structural fill placed outside of the pavement structural section) consist of soils that generally have less than 20 percent fines (particle size less than the Number 200 Standard Sieve) based on the minus ³/₄ inch portion. It should also have a moisture content close to optimum where it can be placed in loose lifts not to exceed 8-inches thick and compacted to at least 95 percent of the maximum density as determined by the Modified Proctor compaction procedure (ASTM D-1557).

Base and subbase course materials should consist of free-draining, relatively clean sandy gravel. Select Material, Type B is specified in the deeper portions of the pavement structural sections. Because of the depth at which this material is placed in the structural section, it may contain slightly higher amounts of fine grained material. This layer combined with the Select Material Type A will provide most of the support needed for the anticipated traffic on the proposed roadway. Select Materials Type A and B are specified in Sections 703-2.09 and 703-2.09, respectively, in the Alaska DOT&PF Standard Specifications for Highway Construction. Figure 3 summarizes the gradation requirements for the materials described above.

Structural fills placed during construction of this project, should be placed in loose lifts not to exceed 12 inches and compacted (with moisture control) to 95 percent of the maximum density as determined by the Modified Proctor compaction procedure (ASTM D-1557). In addition, care should be taken during fill placement to ensure that they are not "contaminated" with deleterious mater such as organics, silt, ice, etc. It is our opinion that proper compaction may be achieved in the granular fill material using conventional vibratory equipment.

8.8 Geosynthetics

Recommendations presented earlier in this report include the use of geofabrics and geogrids. These materials are used for separation of embankment fill from native soils and reinforcement of embankments constructed over soft subgrades. Generalized guidelines for construction and recommended material types are listed below. It should be noted that the recommended applications of these materials previously and below in this report are to be used as guidelines in the final design. The manufacturer of the product selected can provide additional use and design guidelines for the specific product and application.

8.8.1 Geofabric

After the area to be treated with geofabric has been prepared as described in Section 8.1, woven or non-woven geofabric should be placed over the exposed grade. While this geofabric layer will not significantly increase the stability or strength of the embankment itself, it will prevent intermixing of peat and native silts or clays with structural fill. We recommend the following minimum material properties (also known as minimum average roll values or MARV) when selecting a geofabric for this application in the project:

Woven geotextile

•	Puncture by ASTM D4833:	100 lb
•	Mullen Burst by ASTM D3786:	450 psi
•	Trapezoidal Tear by ASTM D4533:	75 lb
•	Grab Tensile by ASTM D4632:	200 lb
•	Grab Tensile Elongation by ASTM D4632:	15 percent
<u>No</u>	on-woven geotextile	
•	Puncture by ASTM D4833:	100 lb
•	Mullen Burst by ASTM D3786:	330 psi
•	Mullen Burst by ASTM D3786:	330 psi

- Trapezoidal Tear by ASTM D4533: 75 lb
- Grab Tensile by ASTM D4632: 180 lb
- Grab Tensile Elongation by ASTM D4632: 50 percent

To minimize the impact of horizontal unconformities due to seams, at least 1 foot of overlap should be maintained on roll side and end seams. End seams should also be staggered by a distance equal to the roll width. Also, after the fabrics are unrolled on the embankment footprint, fills should be pushed onto the fabric from the center of the embankment in an outward direction to discourage the formation of a mudwave as the embankment advances over soft soils.

8.8.2 Geogrid

The geogrid recommended for the bottom of the new embankment sections should increase the strength and stability of the embankment. By increasing the tensile strength of the lower embankment soils, differential settlement should be decreased both longitudinally along the alignment and laterally from the center to the edges of the embankment. We recommend the following minimum material properties (also known as minimum average roll values or MARV) when selecting a geogrid for this application in the project:

•	Aperture Dimension:	1 in.
•	Minimum Rib Thickness:	0.05 in.
•	True Initial Modulus in Use:	27,420 lb/ft
•	True Tensile Strength @ 2% Strain:	410 lb/ft
•	True Tensile Strength @ 5% Strain:	810 lb/ft
•	Junction Efficiency:	93 percent
•	Flexural Stiffness:	4.2 lb-in
•	Aperture Stability:	6.5 degrees

Sections of geogrid should be unrolled smoothly on the grade surface so that it covers the entire exposed grade evenly. There should also be at least 1 foot of overlap between grid sheets. Fill lifts on top of geogrid should be placed and compacted as described in Section 8.7. Traffic on top of the initial lift over the grid should travel in straight lines to prevent damaging the geogrid. In order for geogrid to improve the strength of the embankment soils, it should be placed between compacted granular fill layers. The effectiveness of the geogrid will be greatly reduced if the grid is placed directly on soft or compressible subgrade. Additionally, the double layer of geogrid is recommended such that at least 1 foot, but not more than 3 feet, of fill is placed between the geogrid sheets.

8.9 <u>Drainage</u>

To extend the life of the paved road and pathway and minimize seasonal heaving, attention to drainage details should be emphasized. All paved surfaces should be sloped or crowned at a minimum 2 percent grade to encourage drainage of surface water off the driving surface. Where natural drainage away from the pavement is not possible, such as cut slopes or low lying areas, surface ditches in shoulder areas are recommended to direct surface runoff away from the pavement prism. Keeping the water contents in the subgrade and subbase soils low with good site drainage, will limit seasonal heaving of road pavements.

When placing culverts, it will be important to provide a firm base of compacted fill. We recommend that at least 2 feet of compacted Select Material, Type A be placed beneath each culvert and that the same material also be used around and over the buried pipe so that there is at least 2 feet (or ½ the culvert diameter, whichever is greater) of compacted Select Material Type A atop the pipe. When placing this fill around and on top of this pipe, hand operated compaction equipment should be used.

9.0 CLOSURE AND LIMITATIONS

The analyses and subsurface interpretations contained in this report are based on site conditions as they presently exist. It is assumed that the existing data is representative of the subsurface conditions throughout the site, i.e., the subsurface conditions everywhere are not significantly different from those disclosed by the existing data.

Unanticipated soil conditions are commonly encountered and cannot fully be determined by merely coring pavements or taking soil samples. Such unexpected conditions frequently require that additional expenditures be made to attain a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs. Shannon & Wilson has prepared the attachments in Appendix C "Important Information About Your Geotechnical/Environmental Report" to assist you and others in understanding the use and limitations of the reports.

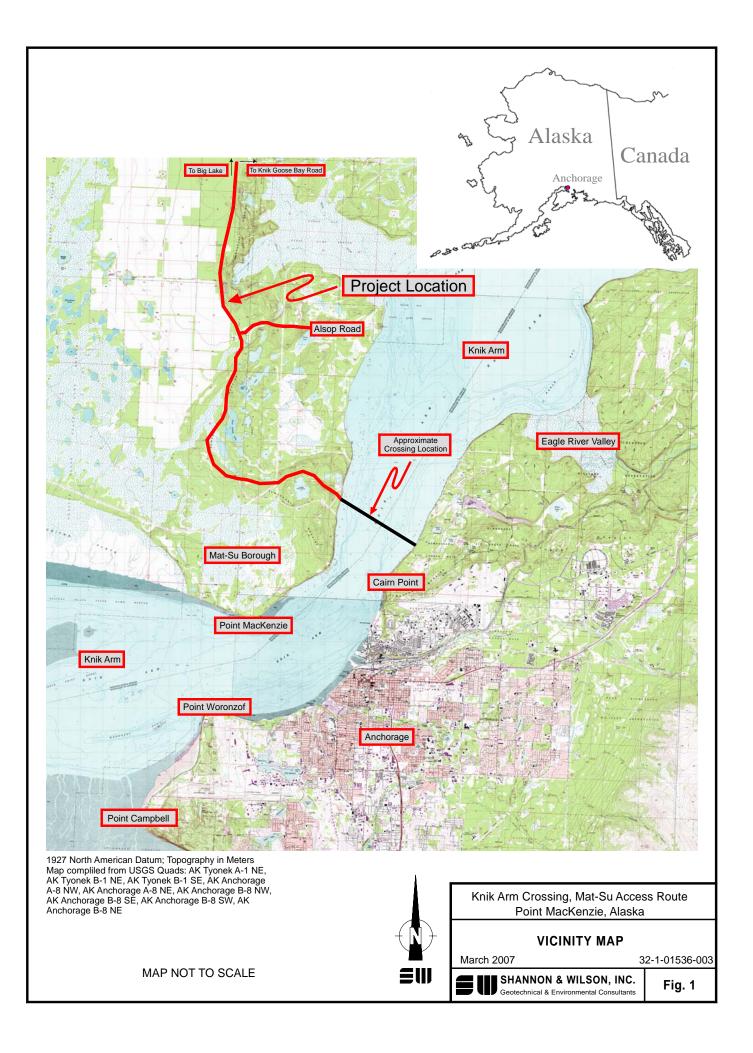
Sincerely,

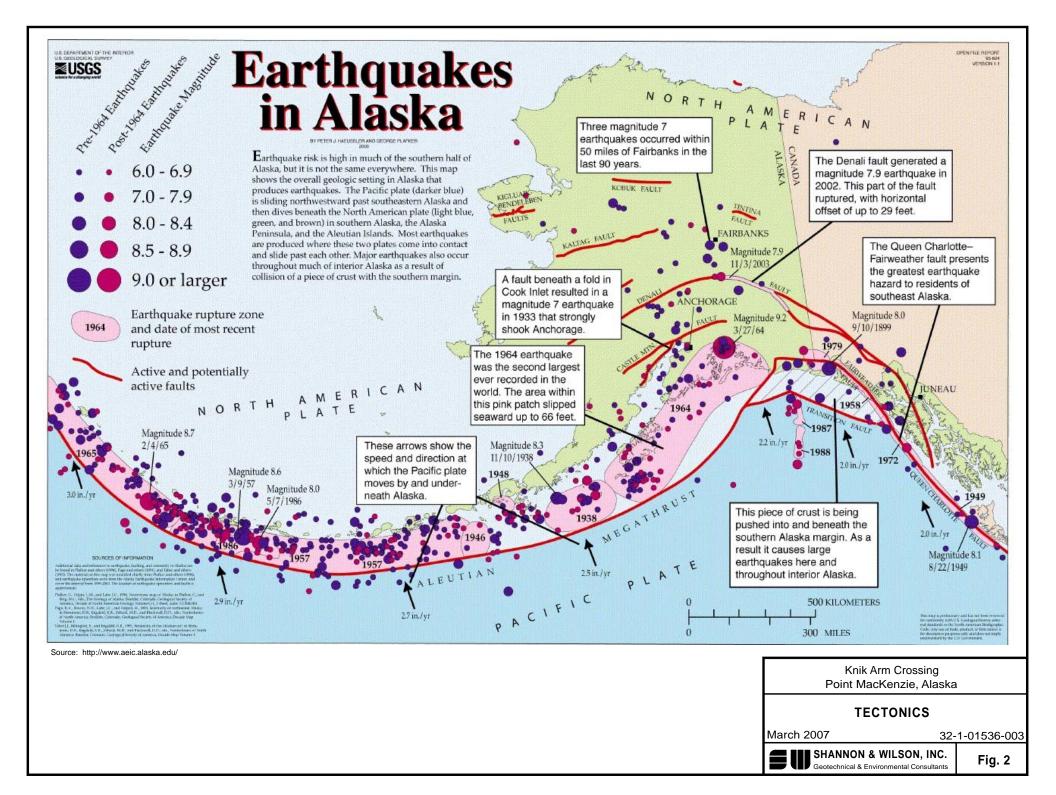
SHANNON & WILSON, INC.

Prepared by:

Kyle Brennan Senior Geotechnical Engineer

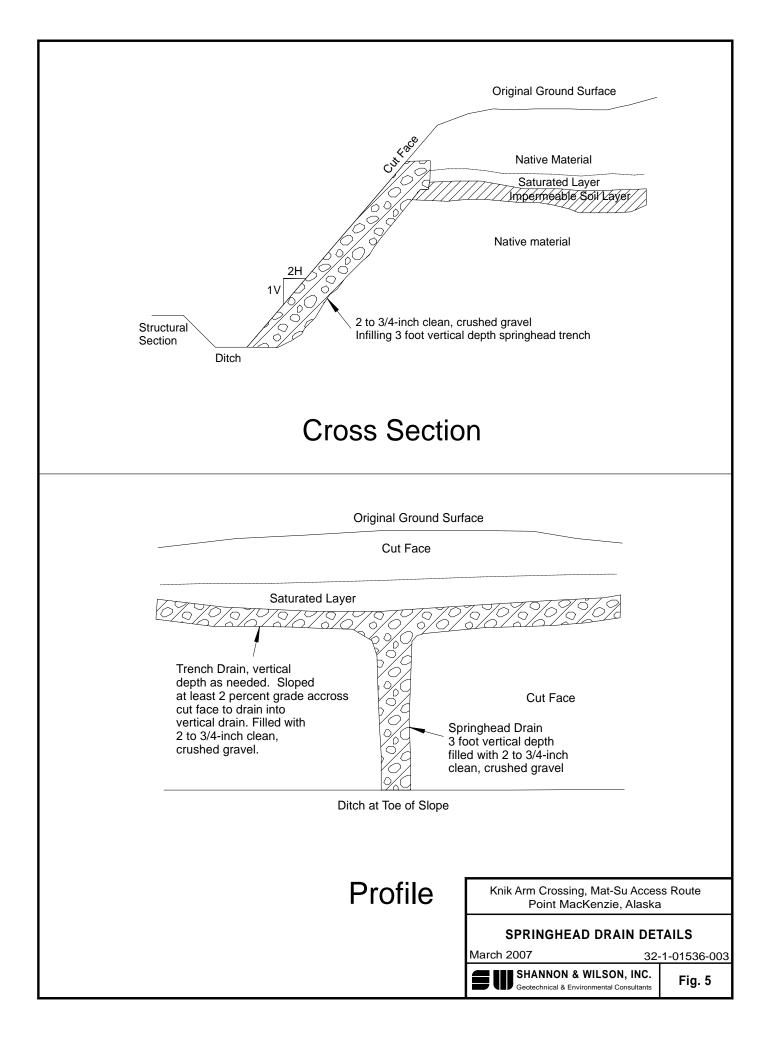
Reviewed by:


William S. Burgess, P.E. Senior Associate


REFERENCES

Alaska Earthquake Information Center (AEIC). No Date. http://www.aeic.alaska.edu


- Alaska Volcano Observatory (AVO). No Date. <u>http://www.avo.alaska.edu/volcanoes/volcact.php?volcname=Redoubt&eruptionid=442&pag</u> <u>e=basics</u>
- Golder Associates, 2003, Knik Arm Geophysical Investigation, December, Draft
- Harding Lawson Associates (HLA). 1983. Marine Seismic Reflection Survey, Knik Arm Crossing, Anchorage, Alaska. Report prepared for EMPS-Sverdrup, J. V.
- Karlstrom, T. N. V. 1964. *Quaternary Geology of the Kenai Lowland and Glacial History of the Cook Inlet Region, Alaska.* U.S. Geological Survey Professional Paper 443.
- Magoon, L. B., W. L. Adkison, and R. M. Egbert. 1976. Map Showing Geology, Wildcat Wells, Tertiary Plant Fossil Localities, K-Ar Age Dates, and Petroleum Operations, Cook Inlet Area, Alaska. U.S. Geological Survey Misc. Investigation Series Map I-1019. Scale 1:250,000.
- Matanuska-Susitna Borough. 1995. Point MacKenzie Area Which Merits Special Attention (AMSA) Plan. Effective date May 23, 1993, printed November 1995.
- National Resources Conservation Service (NRCS). 1998. Soil Survey of the Matanuska-Susitna Valley Area, Alaska.
- Reger, R. D., R. A. Combellick, and J. Brigham-Grette. 1995. "Late-Wisconsin Events in the Upper Cook Inlet Region, Southcentral Alaska." in R. A. Combellick and F. Tannian, eds., *Short Notes on Alaska Geology*. Alaska Division of Geological and Geophysical Surveys Professional Report 117, Fairbanks, pp. 33–45.
- **Reger, R. D. and D. S. Pinney. 1997.** *Guide to the Geology of the Kenai Peninsula, Alaska.* S. M. Karl, N.R. Vaughn, and T.J. Ryherd ed(s).
- Schmoll, H., L. Yehle, C. Gardner, and J. Odum. 1984. *Guide to Surficial Geology and Glacial Stratigraphy in the Upper Cook Inlet Basin.* Alaska Geological Society, Anchorage.
- Shannon & Wilson, Inc., 1971, Geologic and Engineering Reconnaissance, Proposed Knik Arm Crossing, Anchorage, Alaska, August.
- Shannon & Wilson, Inc. 2003, Sand & Gravel Assessment, Elmendorf Moraine, Port MacKenzie, Alaska, October.


- Shannon and Wilson, Inc., 2004, Preliminary Geotechnical Report, Knik Arm Bridge Project, Anchorage, Alaska, February. (32-1-01536)
- Shannon & Wilson, Inc., and Abgabian Associates, 1980, Geotechnical and Strong Motion Earthquake Data from U.S. Accelerograph Stations, Vol.4.
- **Updike, Randall G. and Carpenter, Bruce A., 1986**, *Engineering Geology of the Government Hill Area, Anchorage, Alaska*, U.S. Geological Survey Bulletin 1588.
- **USGS,** *Preliminary Volcano-Hazard Assessment for Mount Spurr Volcano, Alaska,* Alaska Volcano Observatory, 2002.
- Winkler, G. R. 1992. *Geologic Map and Summary Geochronology of the Anchorage 1^o x 3^o Quadrangle, Southern Alaska.* U.S. Geological Survey Misc. Investigation Series Map I-2283. Scale 1:250,000.

GRADATION AND DURABILITY REQUIREMENTS After: Alaska Department of Transportation Standard Specifications for Highway Construction D1					
U.S. STANDARI English		PERCENT PASSING BY WEIGHT			
1 in. 3/4 in. 3/8 in. No. 4 No. 8 No. 50 No. 200	25 mm 19 mm 9.5 mm 4.75 mm 2.36 mm 0.300 mm 0.075 mm	100 70 - 100 50 - 80 35 - 65 20 - 50 8 - 30 0 - 6			
	Select Material Typ				
U.S. STANDAR English	D SIEVE SIZE Metric	PERCENT PASSING BY WEIGHT			
No. 4 No. 200 Aggregate contain or other deleteriou greater than 6 as t	4.75 mm 0.075 mm ing no muck, frozen material, roots, sod s matter and with a plasticity index not ested by WAQTC FOP for AASHTO e gradation as tested by WAQTC FOP T 11.	20 - 55 6 Max. on minus 3-in. portion			
	Select Material Typ				
U.S. STANDAR English	D SIEVE SIZE Metric	PERCENT PASSING BY WEIGHT			
other deleterious r than 6 as tested by	0.075 mm ing no muck, frozen material, roots, sod o natter and with a plasticity index not great WAQTC FOP for AASHTO T 89/T 90. In as tested by WAQTC FOP for AASHTO	ter			
	Select Material Typ				
U.S. STANDARI English	D SIEVE SIZE Metric	PERCENT PASSING BY WEIGHT			
other deleterious n than 6 as tested by	0.075 mm ing no muck, frozen material, roots, sod c natter and with a plasticity index not great WAQTC FOP for AASHTO T 89/T 90. as tested by WAQTC FOP for AASHTO				
Coarse Aggr	regate Durability				
Test Type	Percent Loss	Knik Arm Crossing, Mat-Su Access Route			
	ace Course = 45% max	Point MacKenzie, Alaska GRADATION AND DURABILITY REQUIREMENTS March 2007 32-1-01536			
Base Course = 5	0070 IIIAX	SHANNON & WILSON, INC. Geotechnical & Environmental Consultants Fig.			

APPENDIX A

PLAN AND PROFILE SHEETS / BORING LOGS

TABLE OF CONTENTS

		Page
A.1	Subsurface Investigation	A-1
A.1.1	Geotechnical Borings	A-1
A.1.2	Soil Sampling	A-2

LIST OF FIGURES

Figure A-1 Figure A-2 Figure A-3 Figure A-4 thru A-96 Figure A-97 Figure A-98 thru A-104 Soil Classification Legend Frost Classification Legend Plan and Profile Sheets (Sheets 1 thru 54) Log of Boring B-001 thru B-093 Gravel Source Site Plan Log of Boring X-1 thru X-8

APPENDIX A PLAN AND PROFILE SHEETS / BORING LOGS

The Point MacKenzie Alignment is located along approximately 10 miles of existing Point MacKenzie Road and 3.5 miles of undeveloped land. The purpose of the explorations described below is to provide subsurface information that can be used to facilitate the design of the new road. The information included herein should be considered a starting point as adjustments from the currently proposed alignment later in the project life or other data needs may require additional explorations along the project alignment.

A.1 Subsurface Investigations

Ninety-three borings, designated B-001 through B-093, were conducted along the corridor of the proposed Point MacKenzie Alignment. Additionally, seven borings, designated Boring X-1 through X-4 and X-6 through X-8, were advanced in areas of potential gravel sources. The purpose of the explorations was to gather subsurface information to be used in the development of general geotechnical recommendations for the proposed new roadway. Drilling services for this project were provided by Discovery Drilling, of Anchorage, Alaska. The borings were advanced with 3¹/₄-inch inner diameter (ID), continuous flight, hollow-stem augers. An experienced geologist from our firm was present during drilling to locate the borings, observe drill action, collect samples, log subsurface conditions, and monitor groundwater if appropriate. Fifty-three of the borings were drilled from a truck mounted CME-75 drill rig within the existing Point MacKenzie road prism. The remaining forty borings, as well as the quarry investigation borings, were advanced using a Nodwell (track) mounted CME-55 drill rig off the existing Point MacKenzie Road.

A.1.1 Geotechnical Borings

Conducted during February and March 2006, borings were generally advanced to depths of between 15 and 40 feet below ground surface (bgs). The deeper (30 to 40 feet bgs) borings were advanced in order to characterize cut soils along the proposed alignment. As shown on Figure A-3, most of the borings were not drilled along the proposed centerline of the proposed alignment. Borings along the existing Point MacKenzie Road were shifted left or right of centerline to avoid existing utilities or accommodate road traffic. Borings along the proposed realignment were drilled near centerline within Global Positioning System (GPS) accuracy (\pm 20 feet).

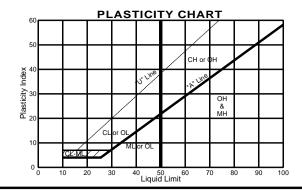
Prior to field work, Shannon & Wilson, Inc. selected boring locations in order to characterize the subsurface conditions along the proposed alignment in areas of deep cuts, fills and organic zones (marshes). Generally, these borings were placed at a spacing of approximately 1,000 feet with increased boring frequency in areas of cuts deeper than 20 feet or in areas of possible organics. PND Engineering converted those locations to GPS coordinates so that locations could be established in the field with a handheld GPS with an accuracy of approximately 20 feet.

An experienced geologist from Shannon & Wilson was present continuously during the field work to locate the borings, observe drilling operations, recover soil samples, and log the subsurface conditions encountered in each boring. At their completion, borings were backfilled using the cuttings removed during the drilling activity and then staked with a pin flag or survey lath. Boring locations along the existing road were surveyed by PND Engineering, Inc. after completion and are plotted in their surveyed locations on the plan and profile sheets presented as in Appendix A, Figure A-3. Locations for borings advanced along the undeveloped portion of the proposed alignment were not surveyed and are plotted on the plan and profile sheets (Figure A-3) in their original locations selected prior to drilling. These locations should be considered approximate. Elevations of the boring locations were established from the plan and profile sheets previded by PND Engineering, Inc. after our explorations and should therefore be considered approximate.

Our field program with a boring location spacing of approximately 1,000 feet does not meet Alaska Department of Transportation & Public Facilities (DOT & PF) standards. Further work is needed to characterize soils between boring locations to conform to ADOT & PF standards.

A.1.2 Soil Sampling

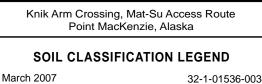
In general, bulk samples were collected from drill cuttings starting at the ground surface to a depth of 2 feet bgs at borings located along the existing Point MacKenzie Road. As the borings in both on and off-road areas were advanced, samples were recovered with a 2-inch outside diameter (OD) split spoon sampler using Standard Penetration Test (SPT) procedures. These samples were recovered by driving the sampler into the bottom of the advancing hole with blows of a 140-lb hammer free falling 30 inches onto the drilling rod. The number of blows required to advance the sampler the final 12 inches of an 18-inch penetration is termed the Penetration Resistance, which was recorded for each sample. Penetration resistance values that were collected in the field are shown graphically on the boring logs adjacent to the sample depth and give a measure of the relative density (compactness) or consistency (stiffness) of cohesionless or cohesive soils, respectively. In the event that the blows for a six-inch penetration exceeded 50


blows, the penetration resistance is recorded as "sampler refusal". Sampler refusal was as recorded when after 20 blows the sampler had not moved. Sampler refusal is noted on the boring logs in place of penetration resistance.

Pocket Penetrometer (PP) and Torvane (TV) tests were performed on the fine-grained soils encountered in our borings. The pocket penetrometer is a hand-held spring-calibrated ¹/₄-inch cylindrical probe, which is slowly pushed into the cohesive soil specimen until ¹/₄-inch penetration is achieved. The maximum reading is then taken and provides an estimate of the unconfined compressive strength. The upper limit of this test is 4.5 tons per square foot thus when the limit was exceeded in the test the results are reported as > 4.5 tsf. The results are presented on the boring logs as PP in tons per square foot (tsf).

The Torvane is a hand-held, spring calibrated torsional device with six small steel vanes on the end. In this test the vanes are pushed into the specimen and then torqued until failure by shearing results. The highest reading is then recorded as an estimate of the materials undrained shear strength. The results of this testing are included on the boring logs as TVH (horizontal orientation) or TVV (vertical orientation) in tsf.

GROUP NAME Criteria for Assigning Group Names and Group Symbols				Soil Classification Group Symbol with Generalized Group Descriptions	
	GRAVELS 50% or more of	Clean GRAVELS		GW	Well-graded Gravels
		Less than 5% fines		GP	Poorly-graded Gravels
COARSE-GRAINED	coarse fraction retained on No. 4 sieve	GRAVELS with fines		GM	Gravel & Silt Mixtures
SOILS more than 50%	Sleve	More than 12% fines		GC	Gravel & Clay Mixtures
retained on No. 200 sieve	SANDS More than 50% of coarse fraction passes No. 4 sieve	Clean SANDS Less than 5% fines		SW	Well-graded Sands
110. 200 Sieve				SP	Poorly-graded Sands
		SANDS with fines More than 12% fines		SM	Sand & Silt Mixtures
				SC	Sand & Clay Mixtures
	SILTS AND CLAYS Liquid limit 50% or less	INORGANIC		ML	Non-plastic & Low- plasticity Silts
				CL	Low-plasticity Clays
FINE-GRAINED SOILS 50% or more		ORGANIC		OL	Non-plastic and Low- plasticity Organic Clays Non-plastic and Low- plasticity Organic Silts
passes the No. 200 sieve	SILTS AND CLAYS Liquid limit greater than 50%	INORGANIC		СН	High-plasticity Clays
				ΜН	High-plasticity Silts
		ORGANIC		он	High-plasticity Organic Clays High-plasticity Organic Silts
HIGHLY ORGANIC SOILS	Primarily organic matter, dark in color,		e ac ac ac ac ac ac ac ac ac ac ac ac ac ac ac	PT	Peat


Organic Content				
Adjective Percent by Volum				
Occasional	0-1			
	1-10			
	10-30			
Organic	30-50, minor constituent			
Peat	50-100, MAJOR constituent			

Descriptive Terminology Denoting Component Proportions

Description	Range of Proportion
Add the adjective "slightly"	5 - 12%
Add soil adjective ^(a)	12 - 50%
Major proportion in upper case, (e.g., SAND)	>50%

Use gravelly, sandy, or silty as appropriate NOTE: The soil descriptions used in the boring logs lists constituents from smallest percentage to largest percentage.

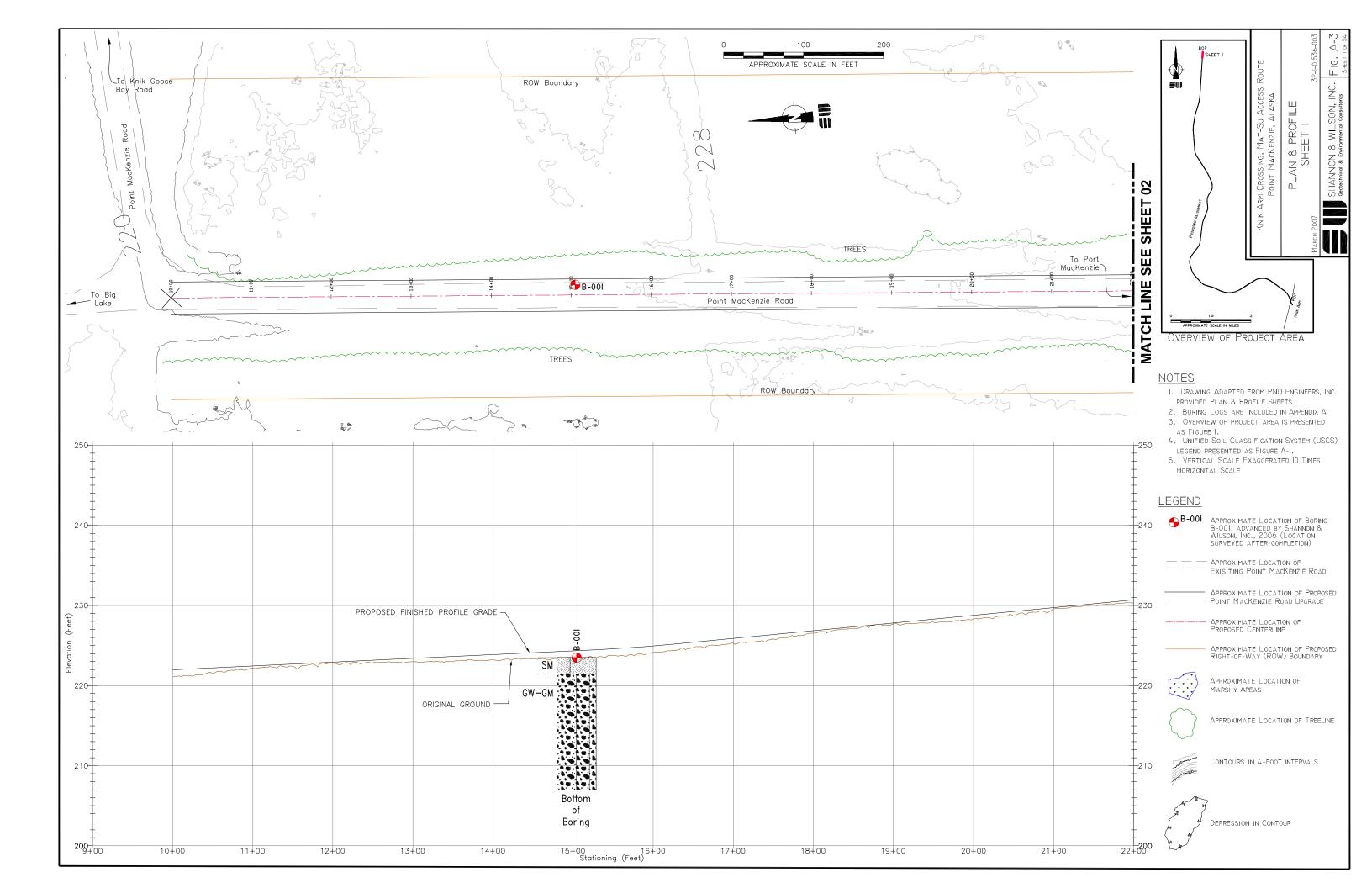
SHANNON & WILSON, INC. Fig. A-1 Geotechnical & Environmental Consultants

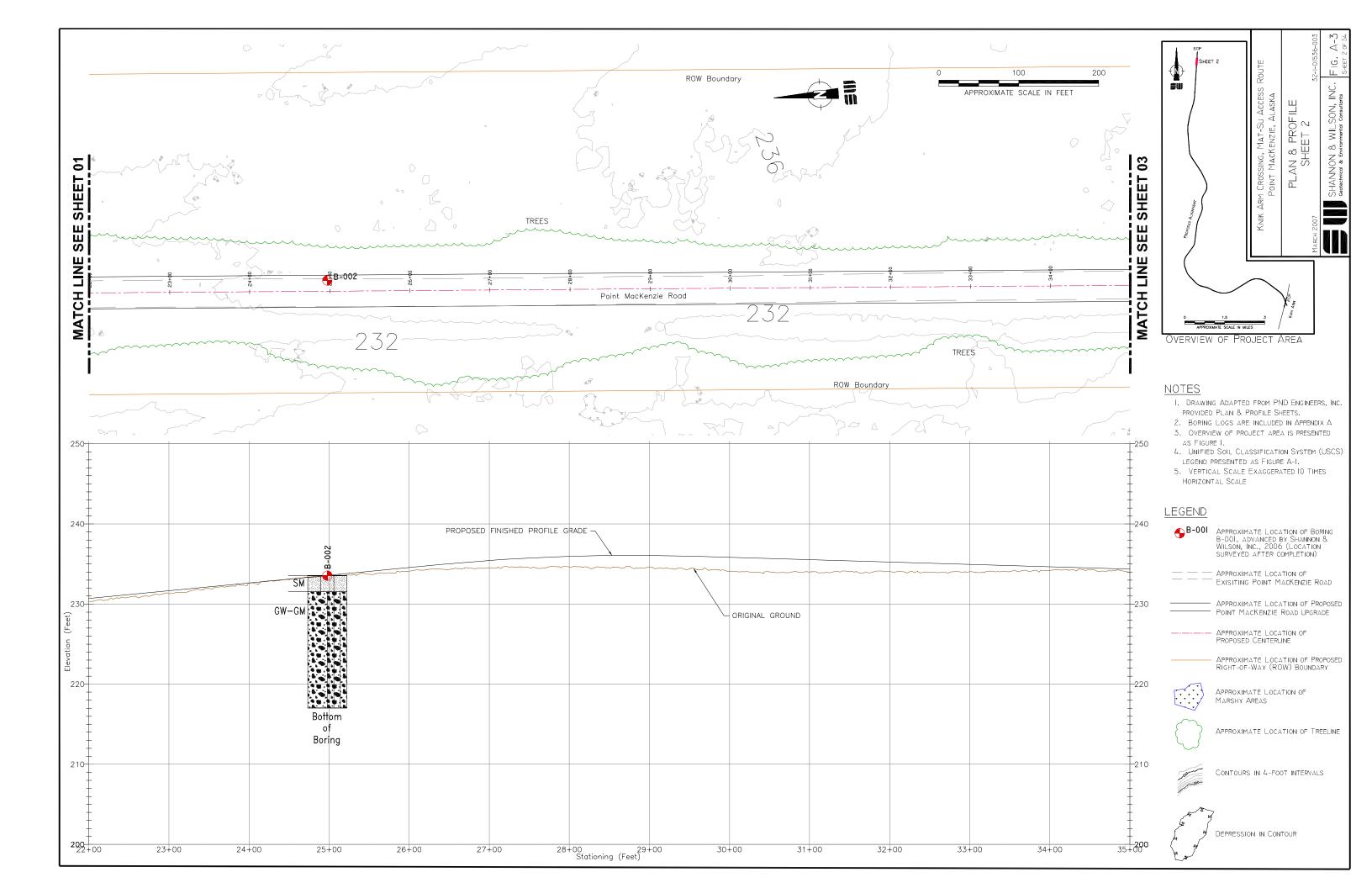
SHANNON & WILSON, INC.

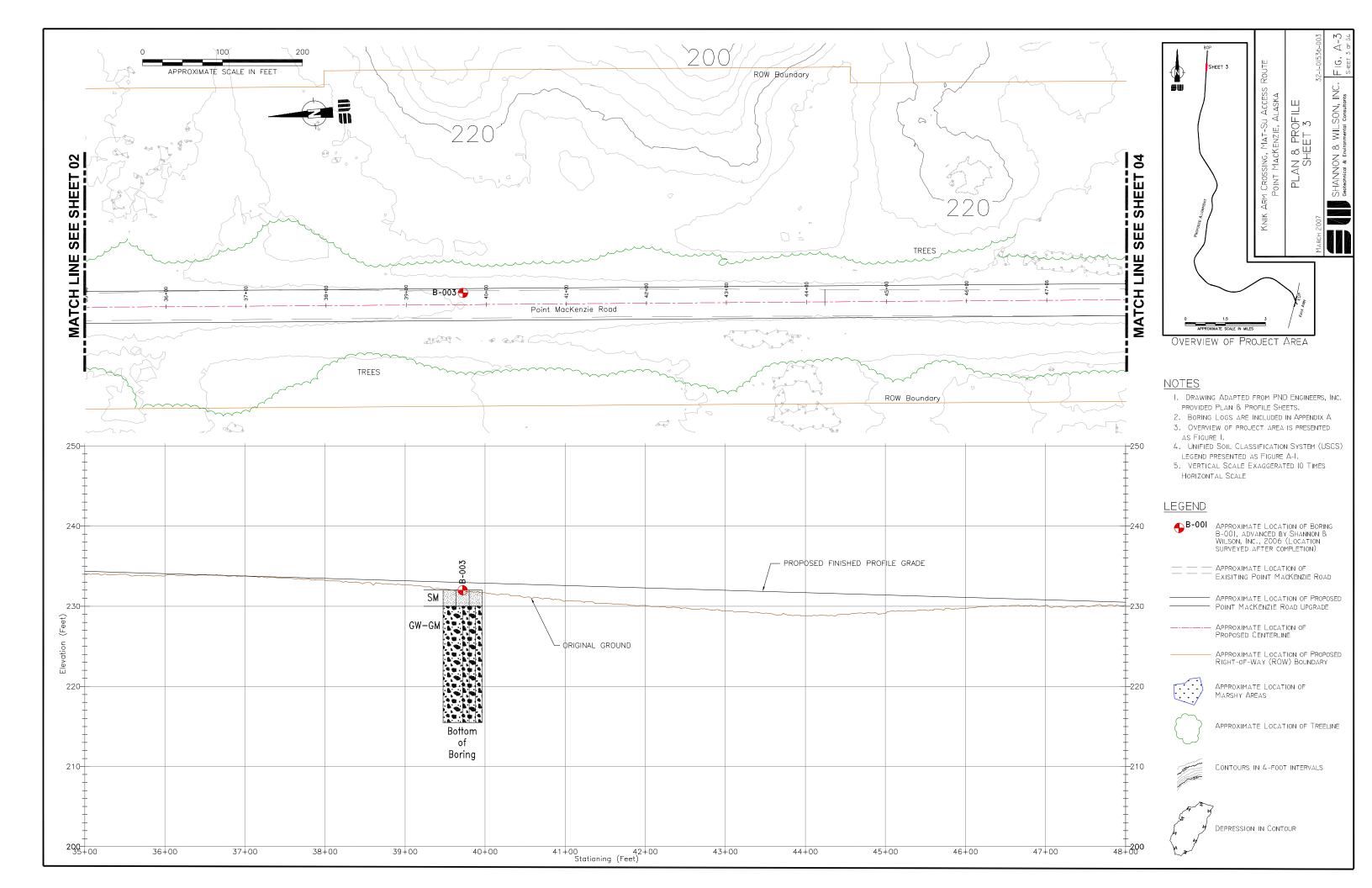
(after Municipality of Anchorage)

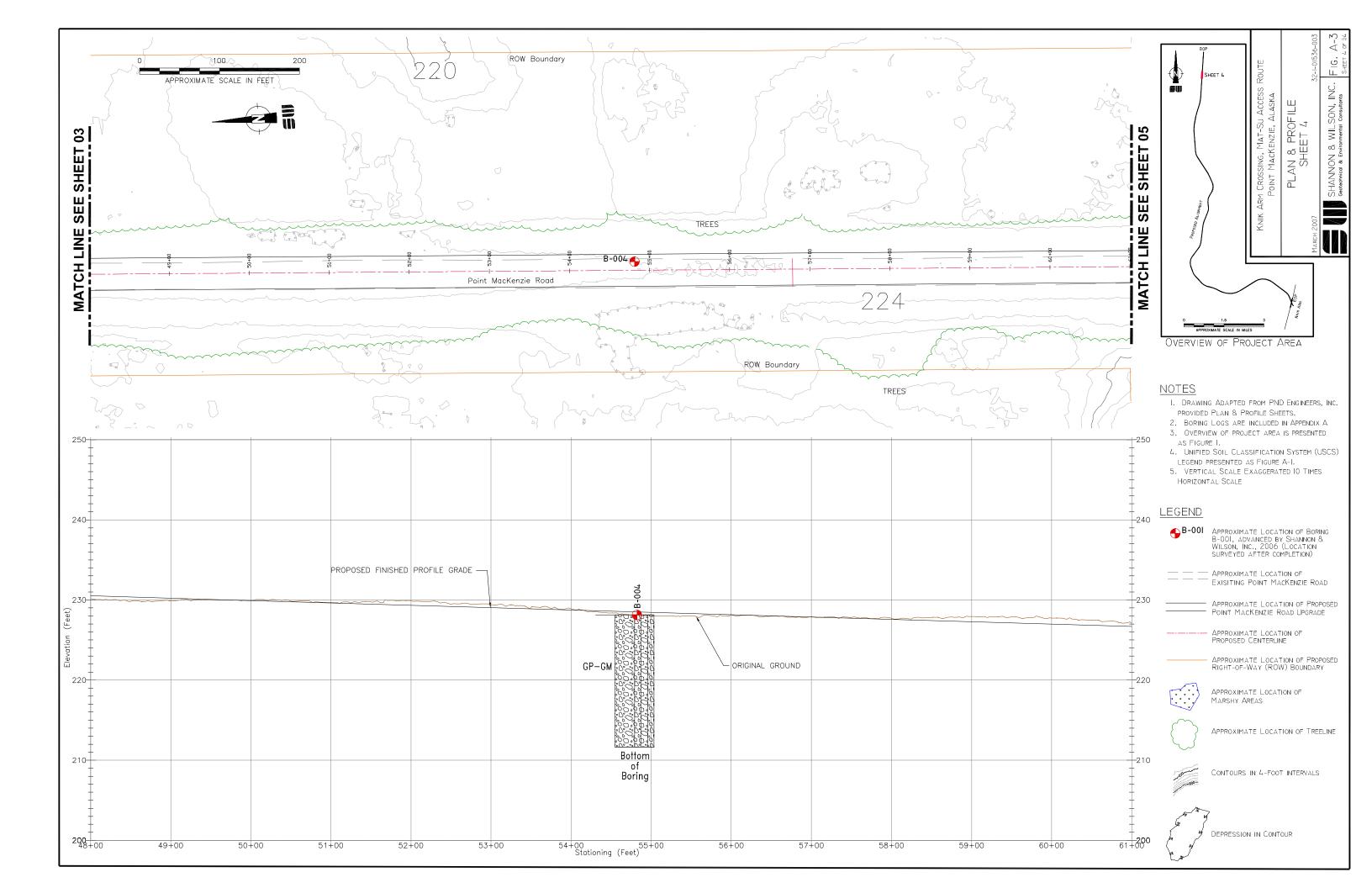
GROUP		P-200	USC SYSTEM
NFS	Sandy Soils	0 to 3	SW, SP
NF3	Gravelly Soils	0 to 6	GW, GP, GW-GM, GP-GM
F1	Sandy Soils	3 to 6	SW, SP, SW-SM, SP-SM
ГІ	Gravelly Soils	6 to 13	GM, GW-GM, GP-GM
F2	Sandy Soils	6 to 19	SP-SM, SW-SM, SM
ΓZ	Gravelly Soils	13 to 25	GM
	Sands, except very fine silty sands*	Over 19	SM, SC
F3	Gravelly Soils	Over 25	GM, GC
	Clays, PI>12		CL, CH
	All Silts		ML, MH
	Very fine silty sands*	Over 19	SM, SC
F4	Clays, PI<12		CL, CL-ML
	Varved clays and other fined grained, banded sediments		CL and ML CL, ML, and SM; SL, SH, and ML; CL, CH, ML, and SM

P-200 = Percent passing the number 200 sieve

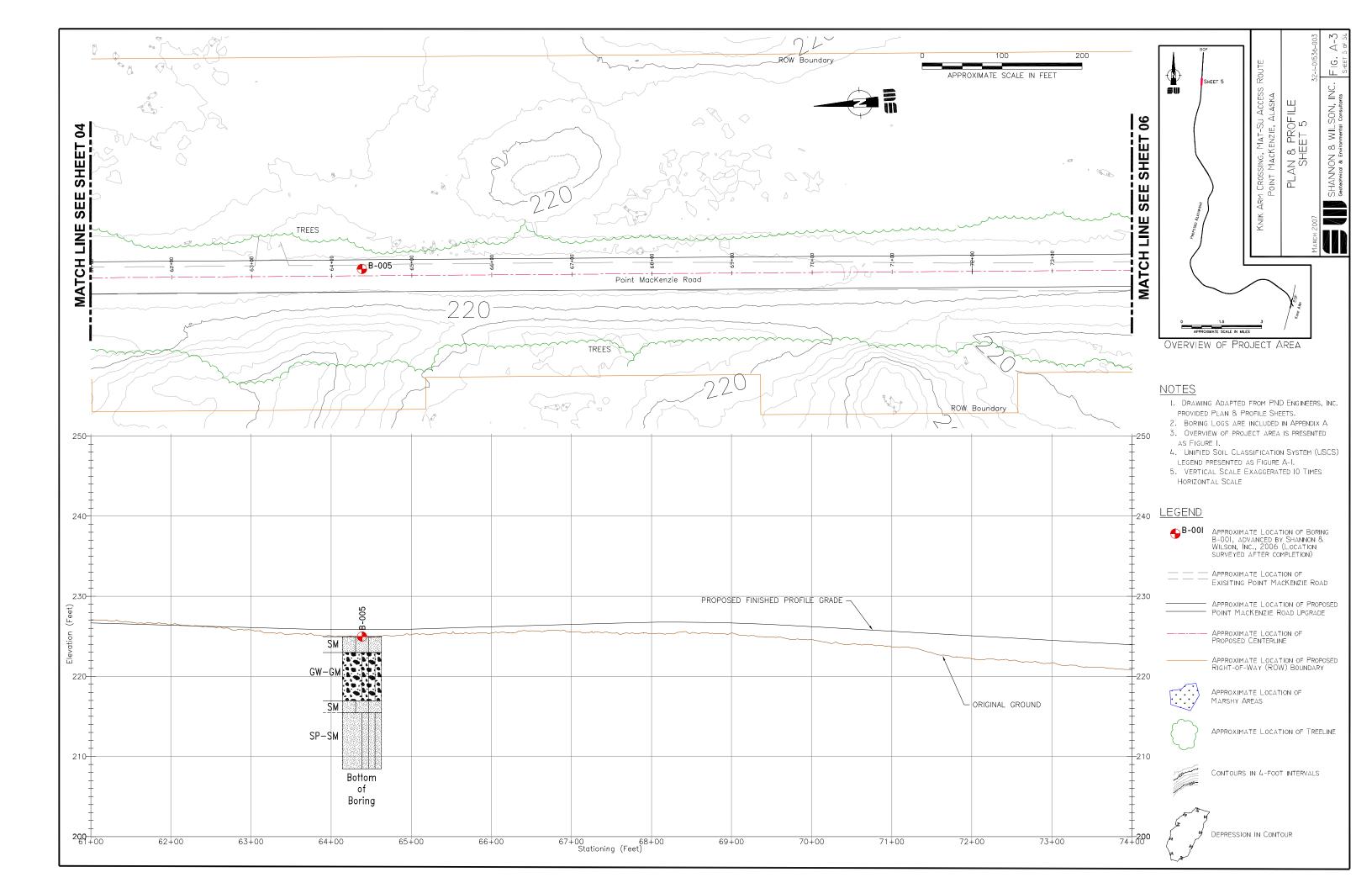

* Very fine sand : greater than 50% of sand fraction passing the number 100 sieve

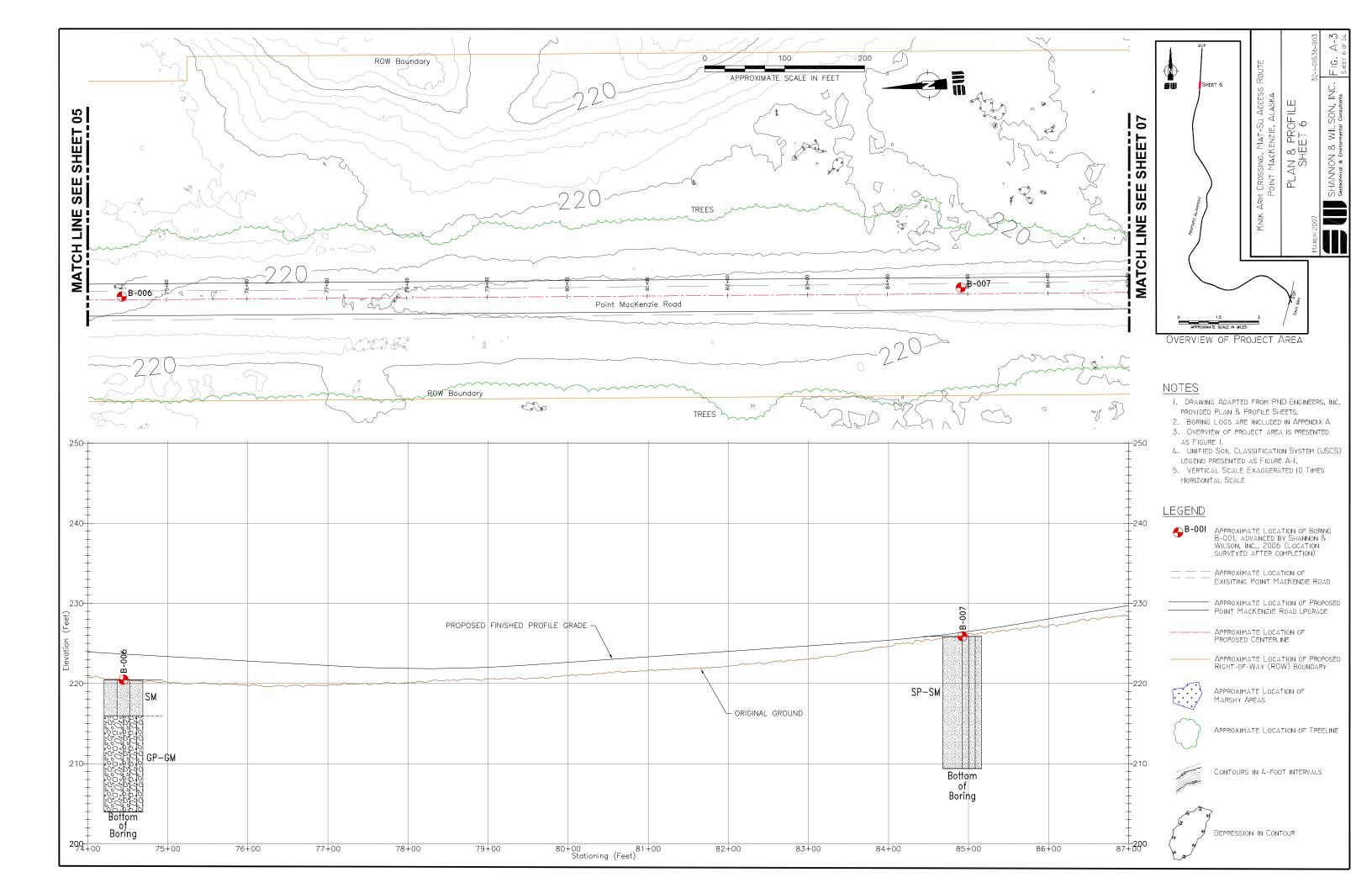

Knik Arm Crossing, Mat-Su Access Route Point MacKenzie, Alaska

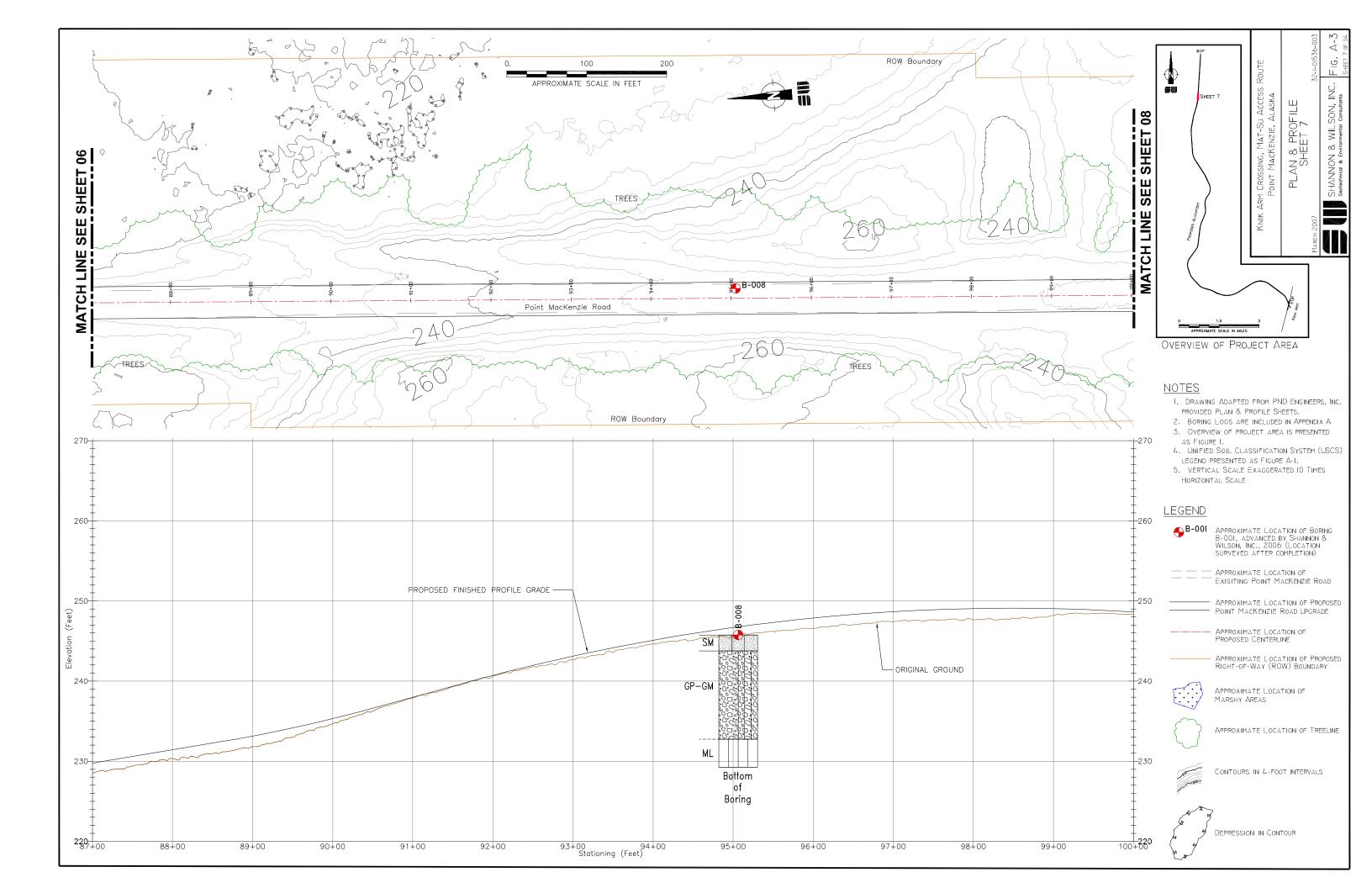

FROST CLASSIFICATION LEGEND

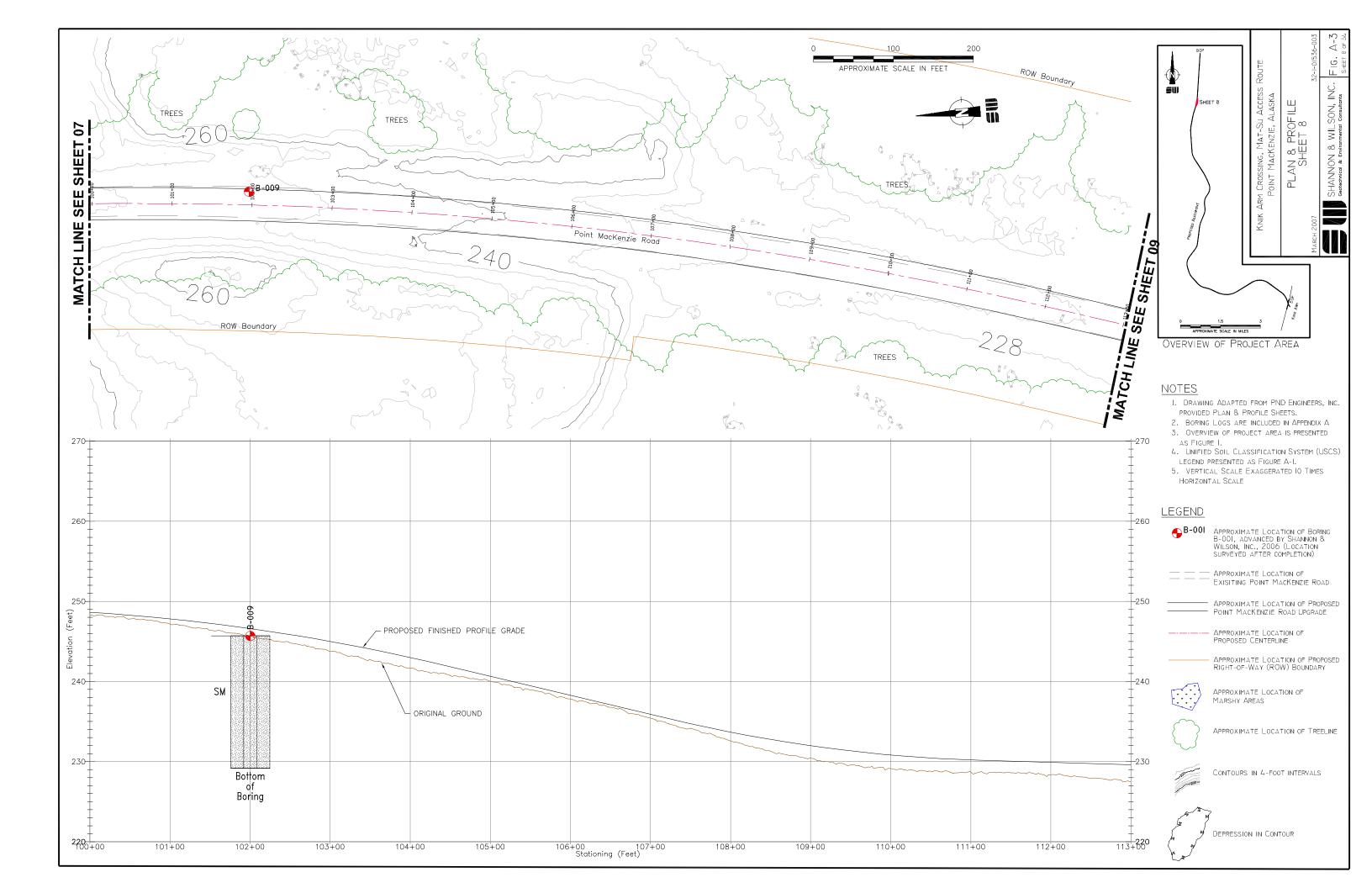


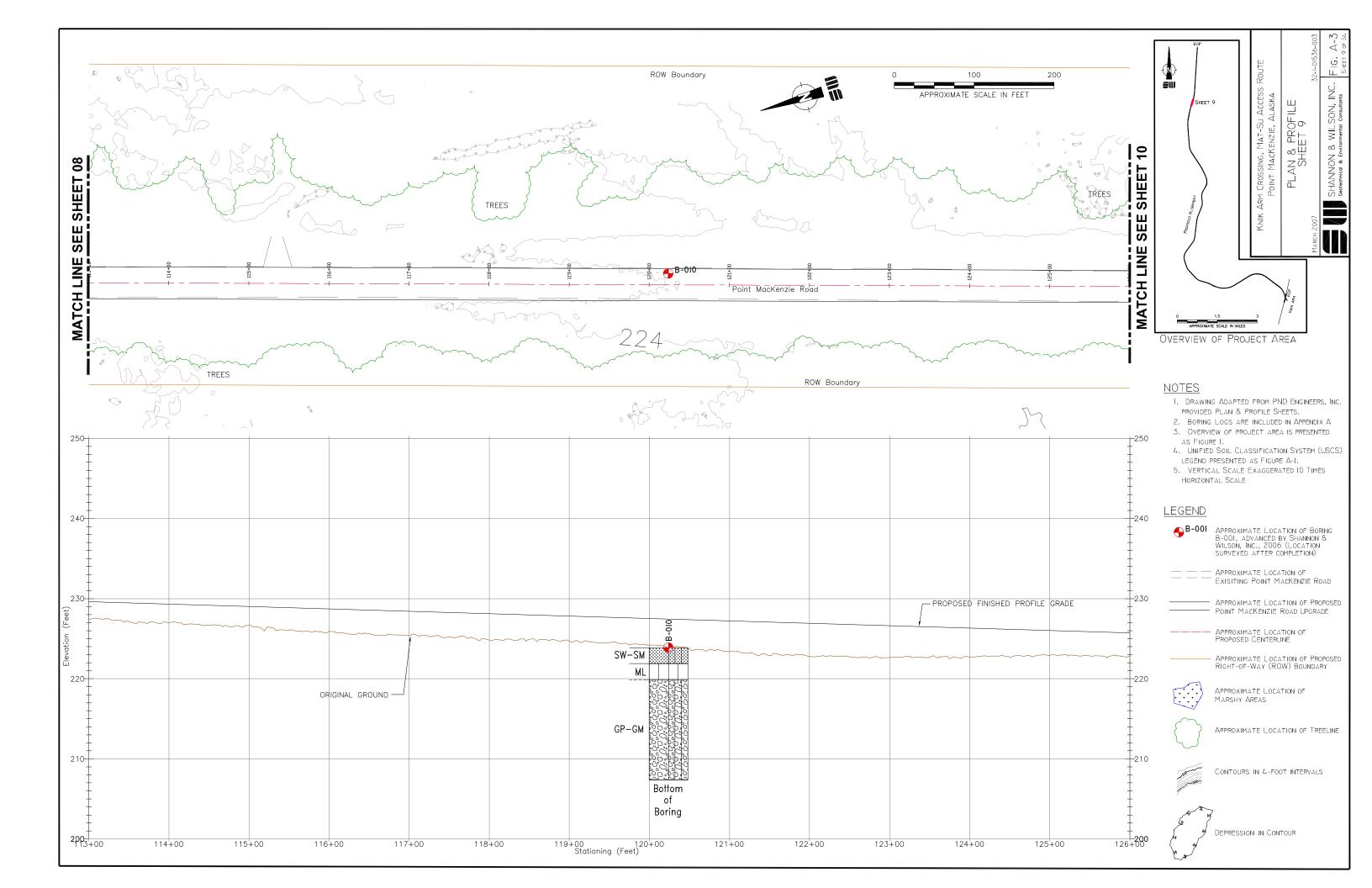
 March 2007
 32-1-01536-003

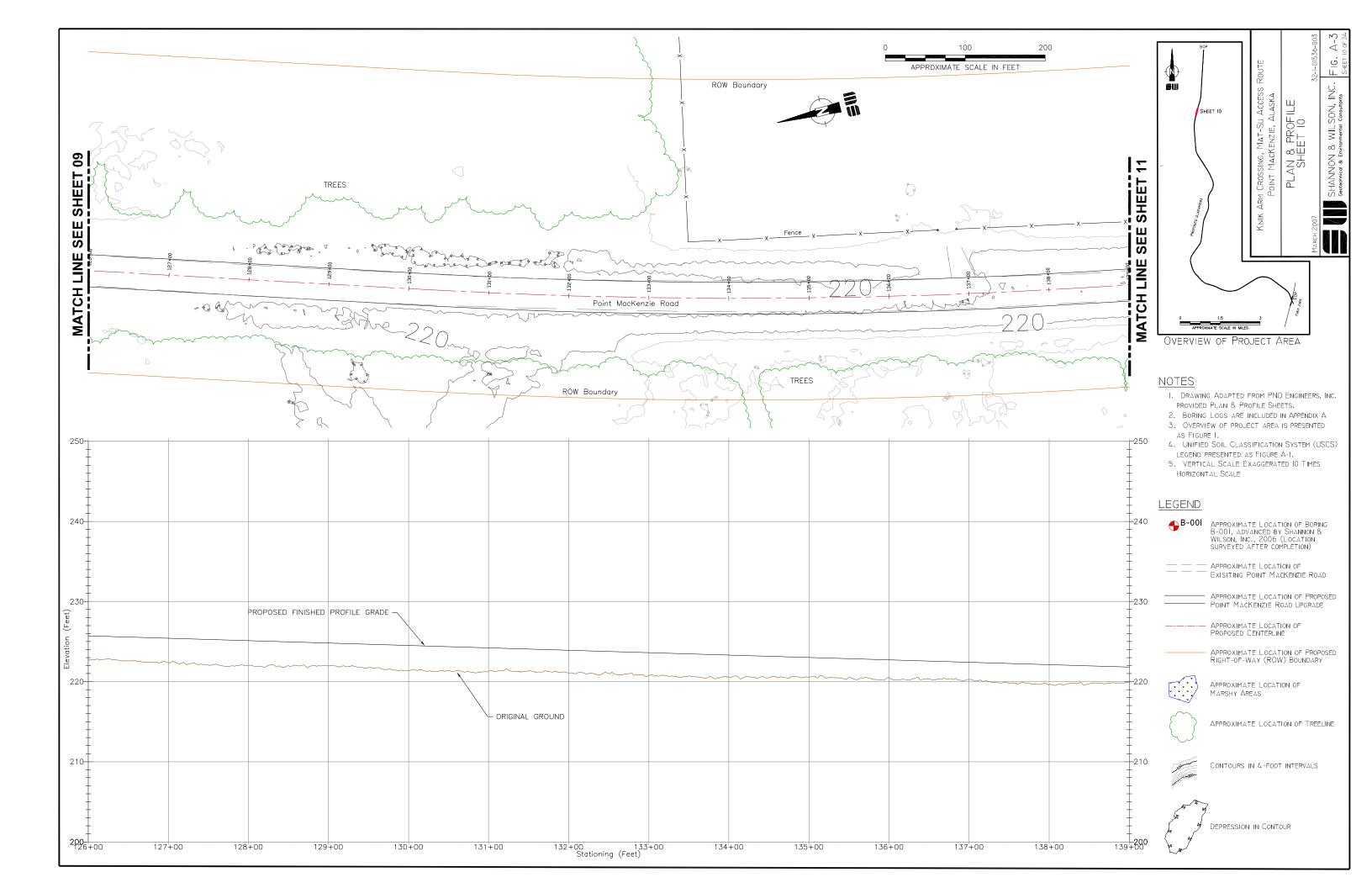

 SHANNON & WILSON, INC. Geotechnical & Environmental Consultants
 Fig. A-2

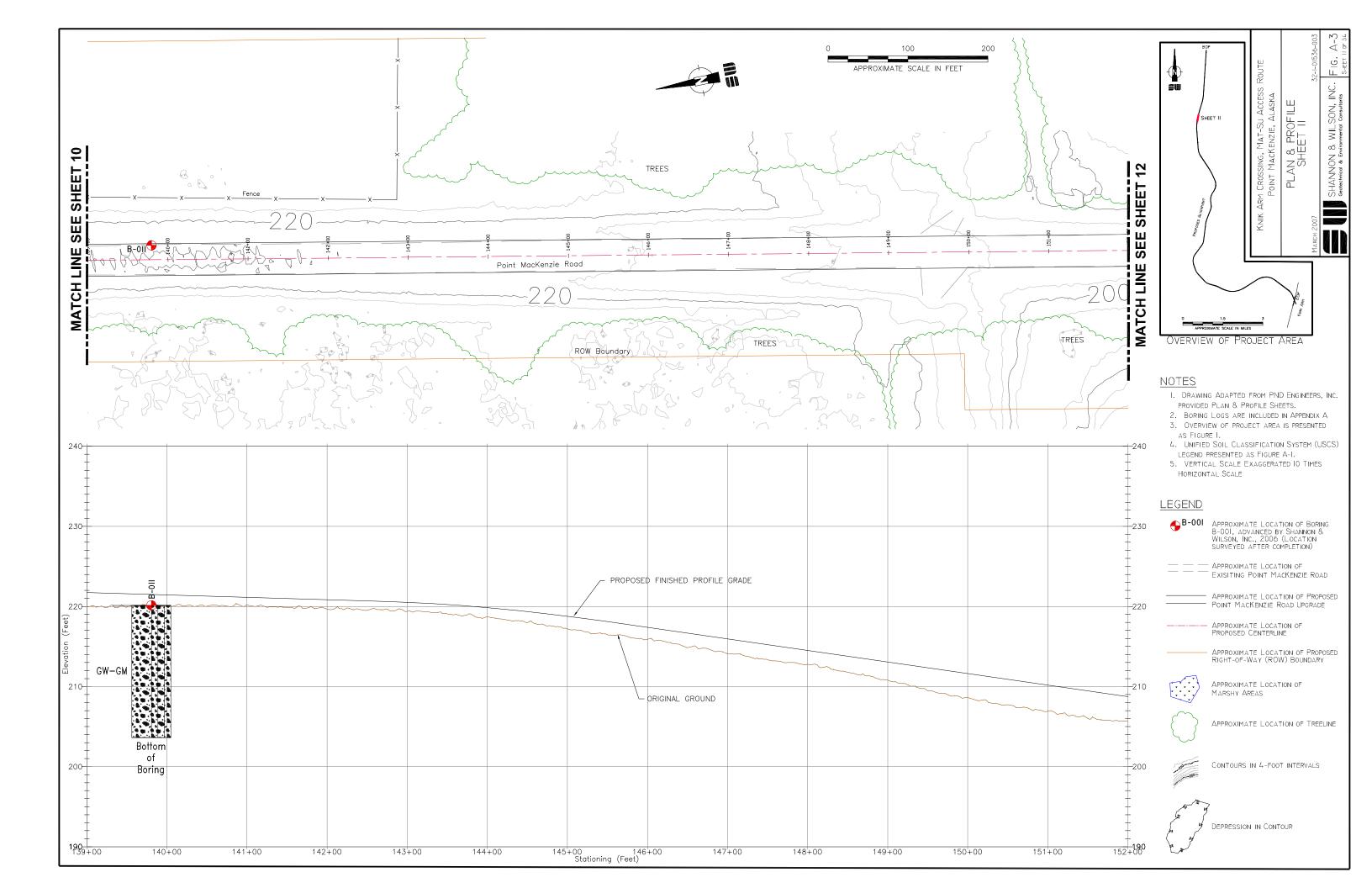


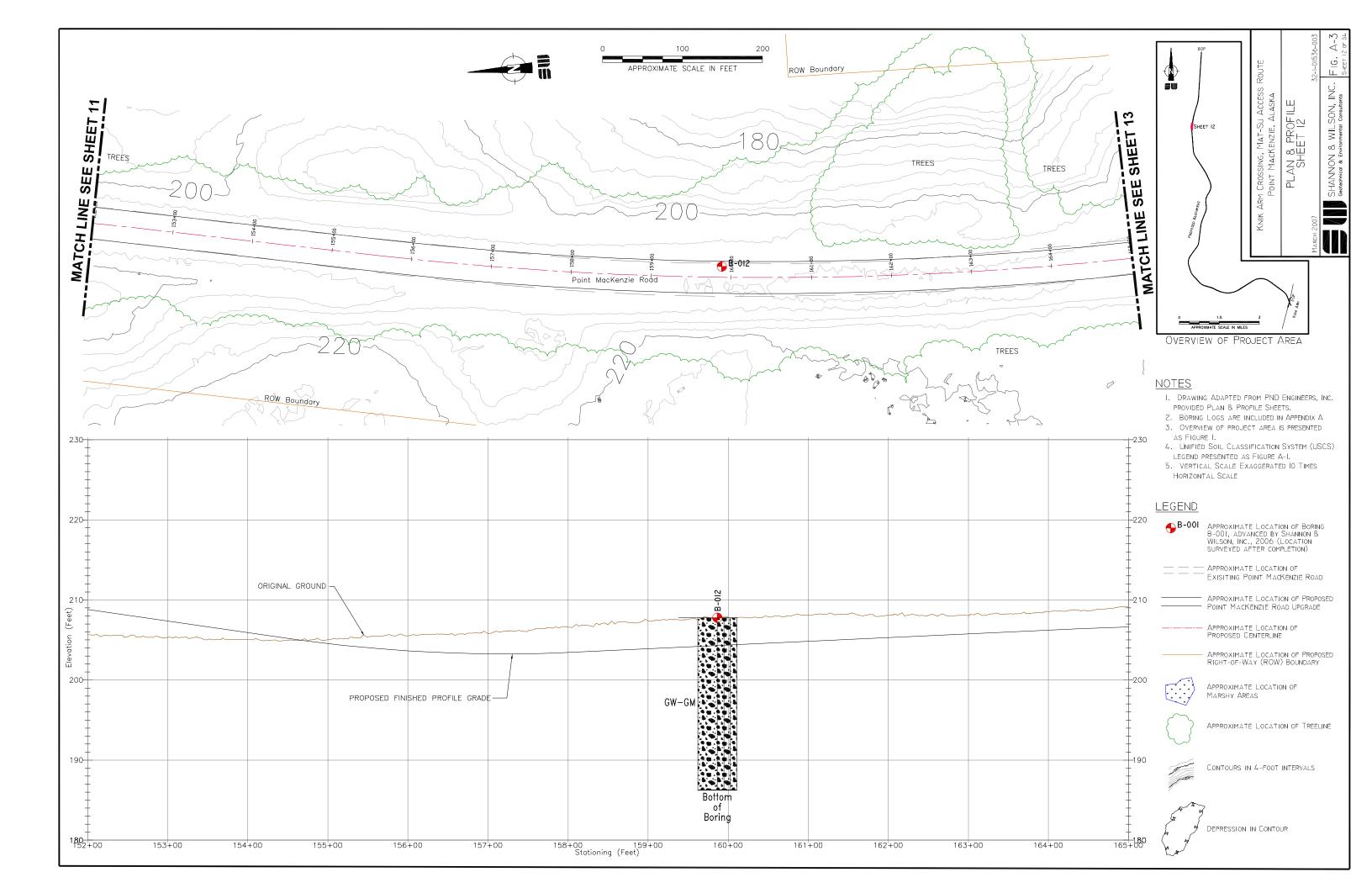


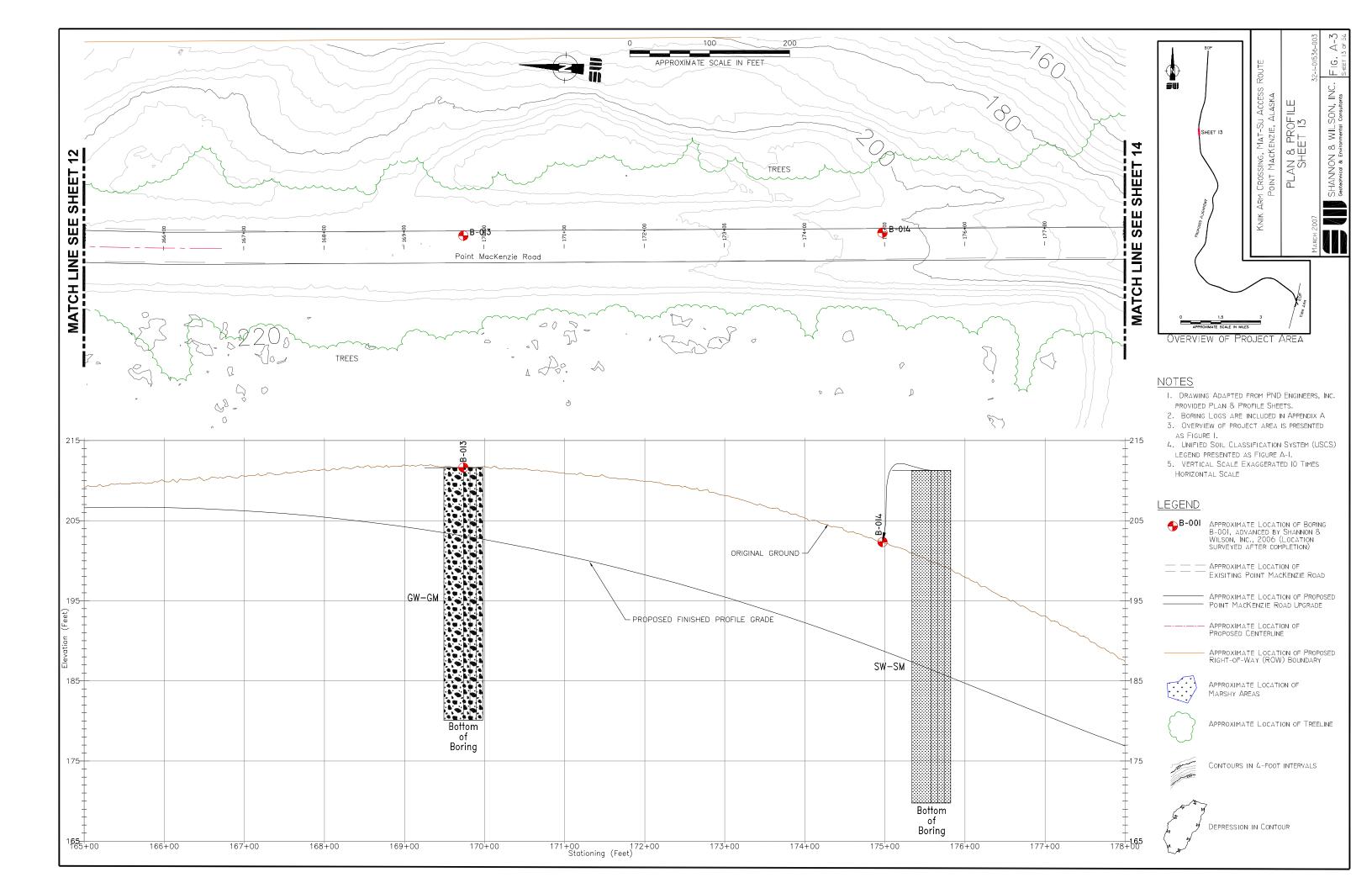


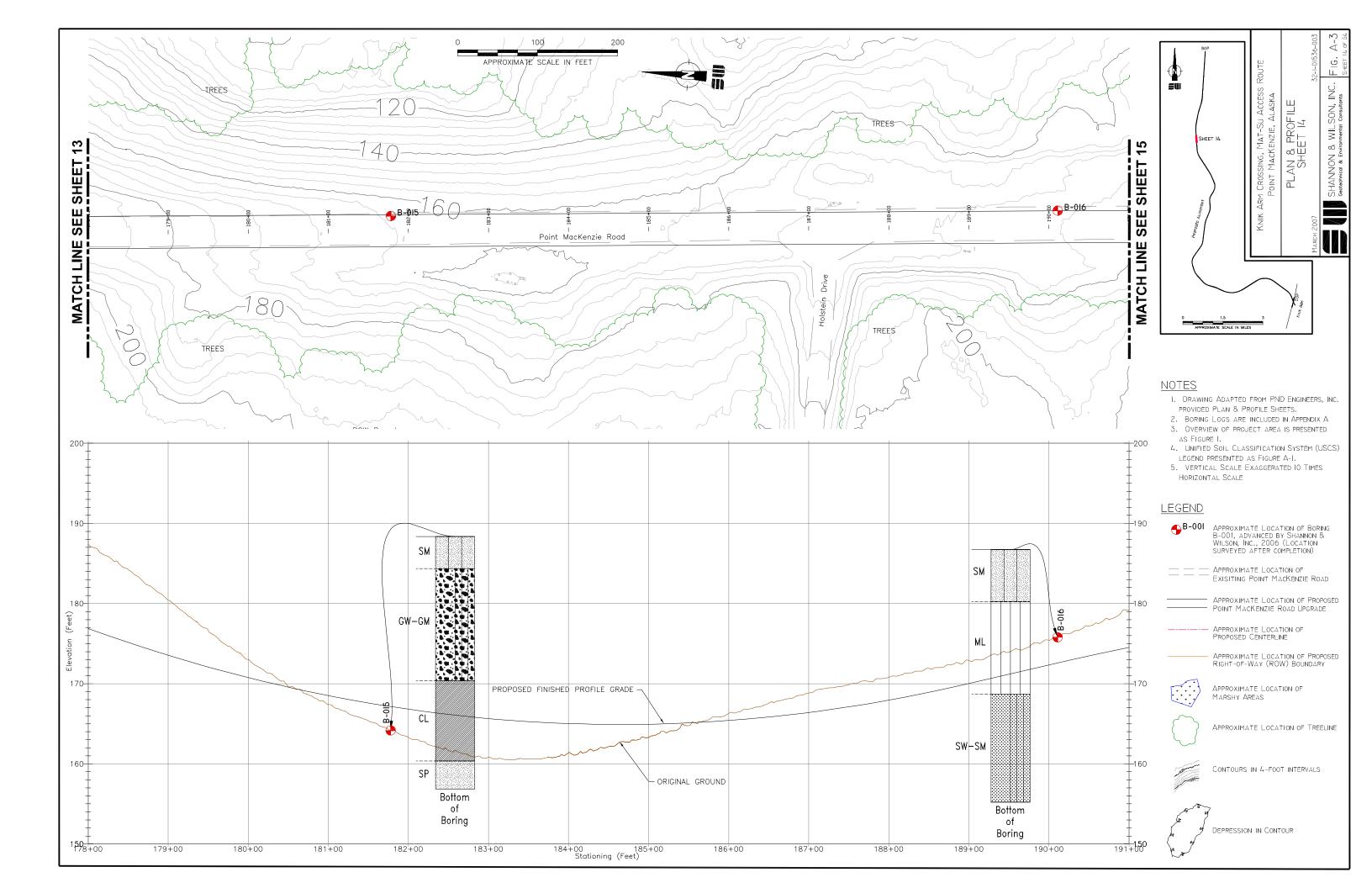


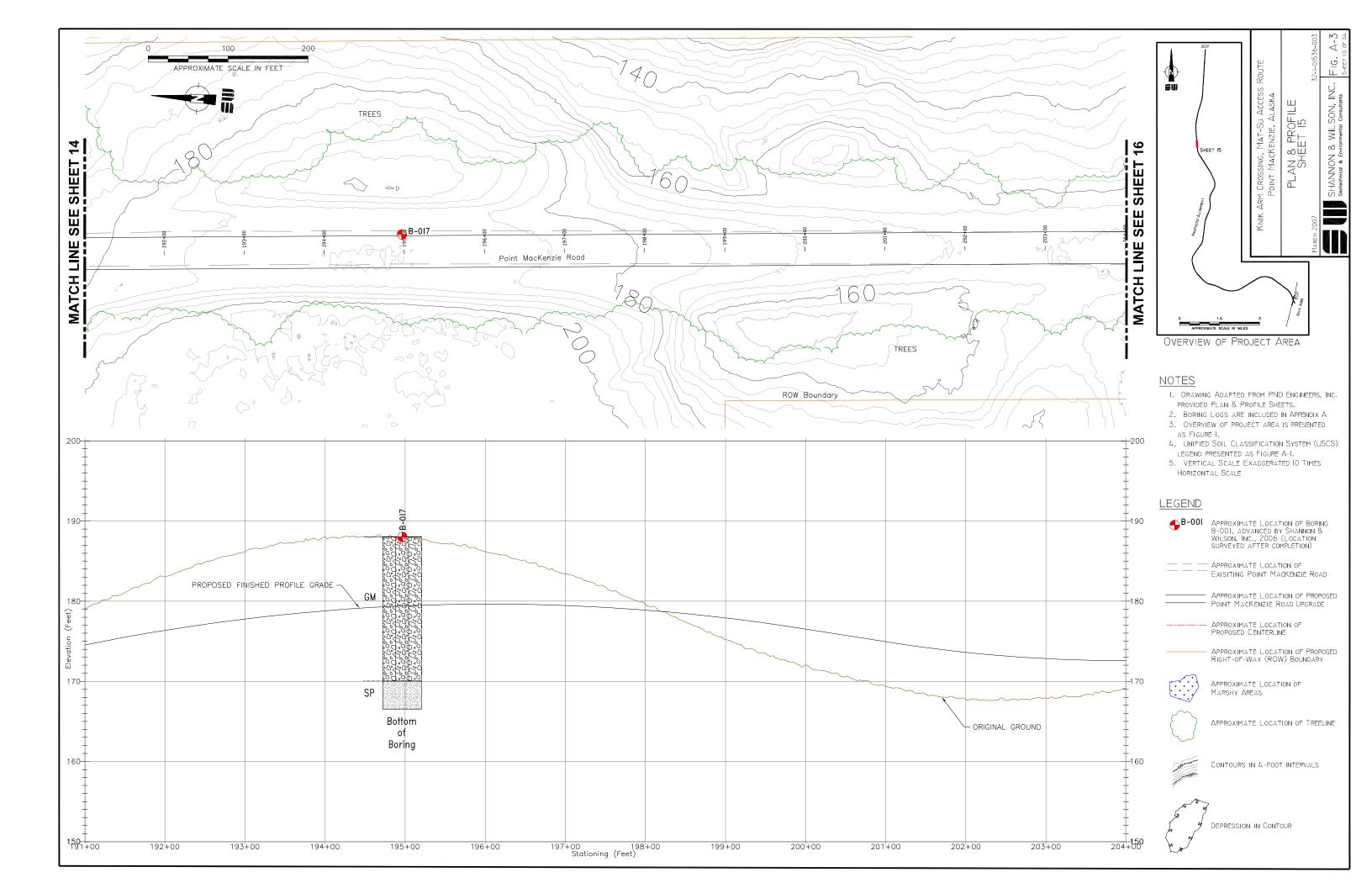


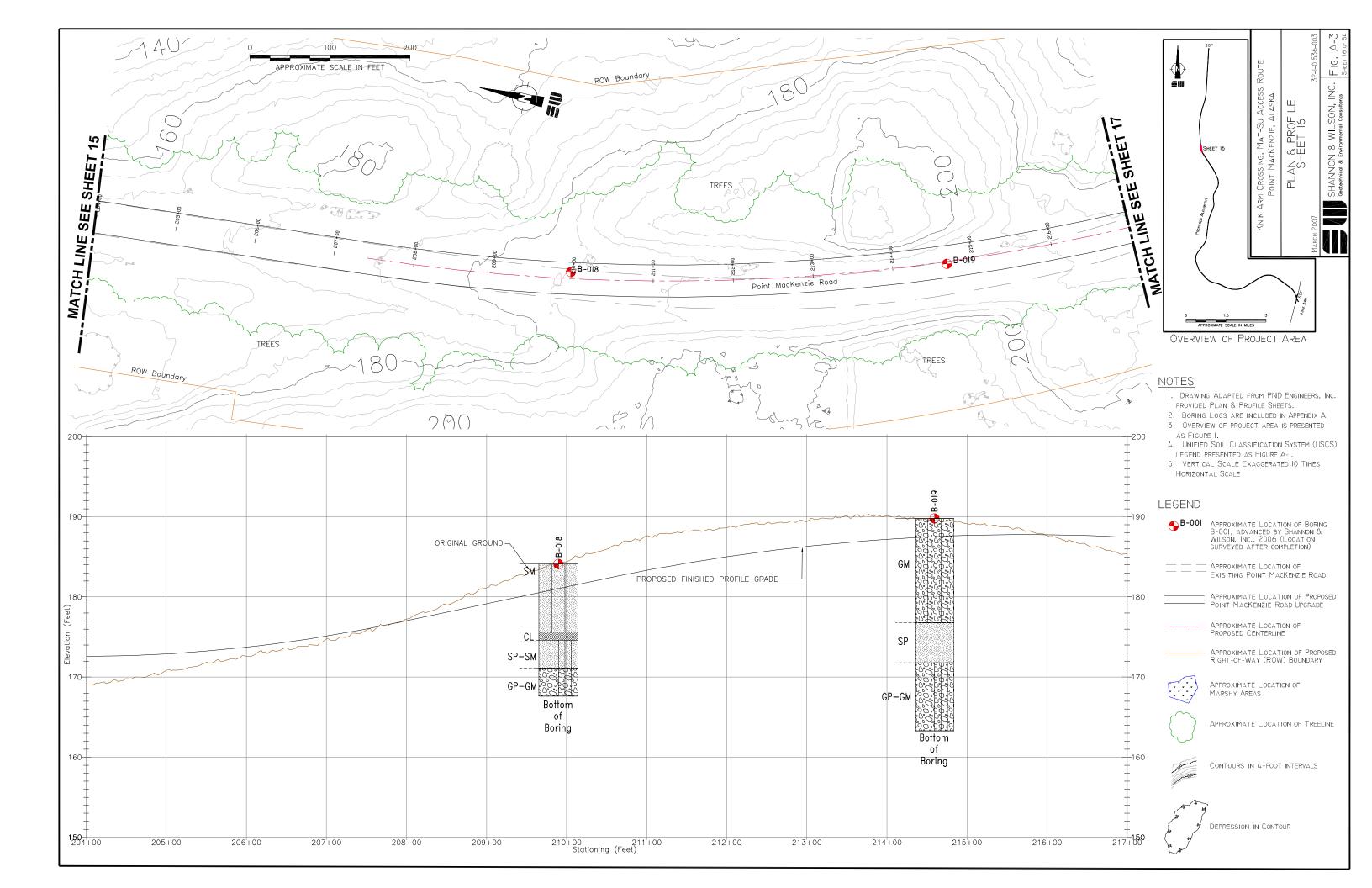


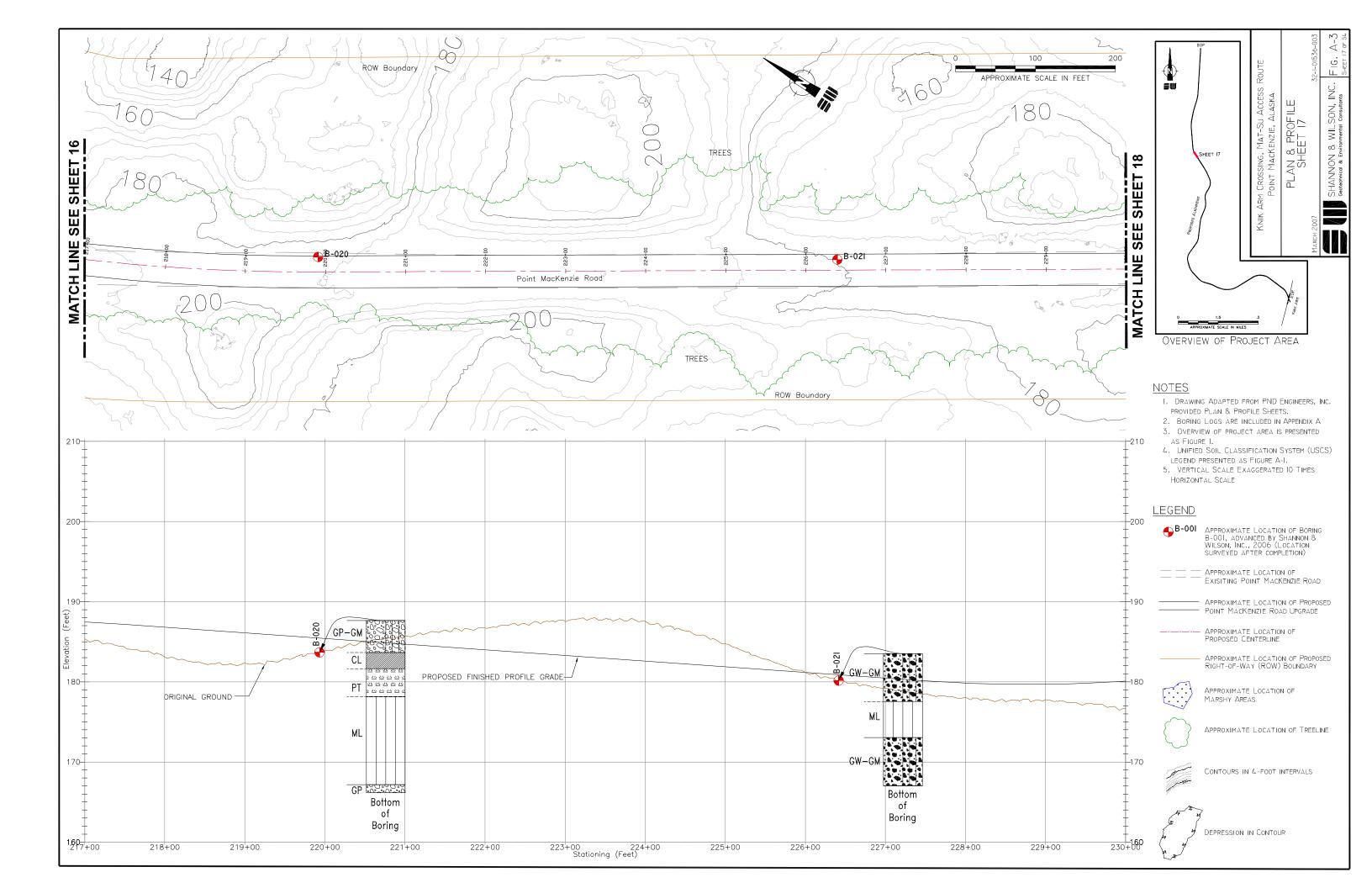


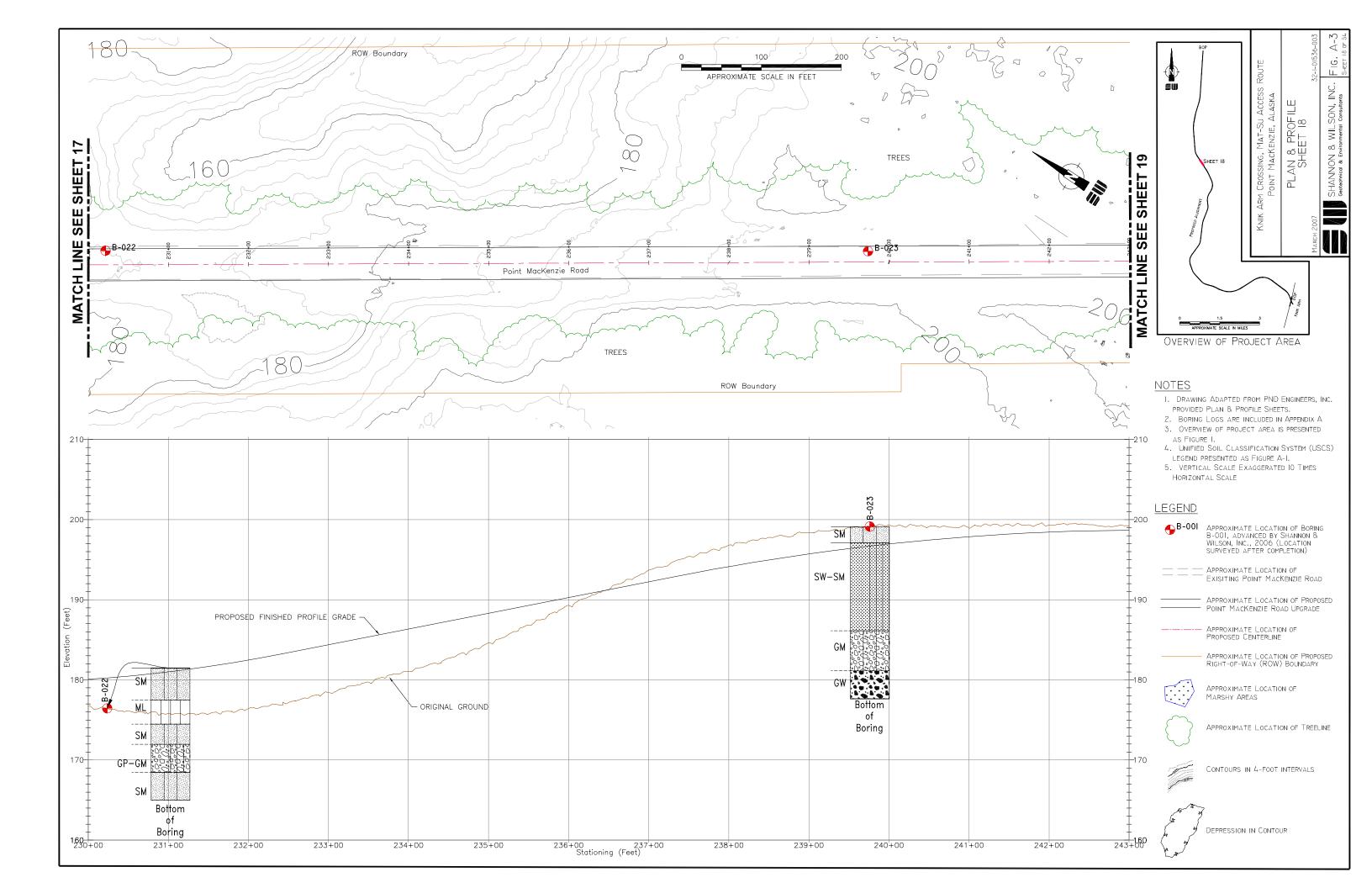


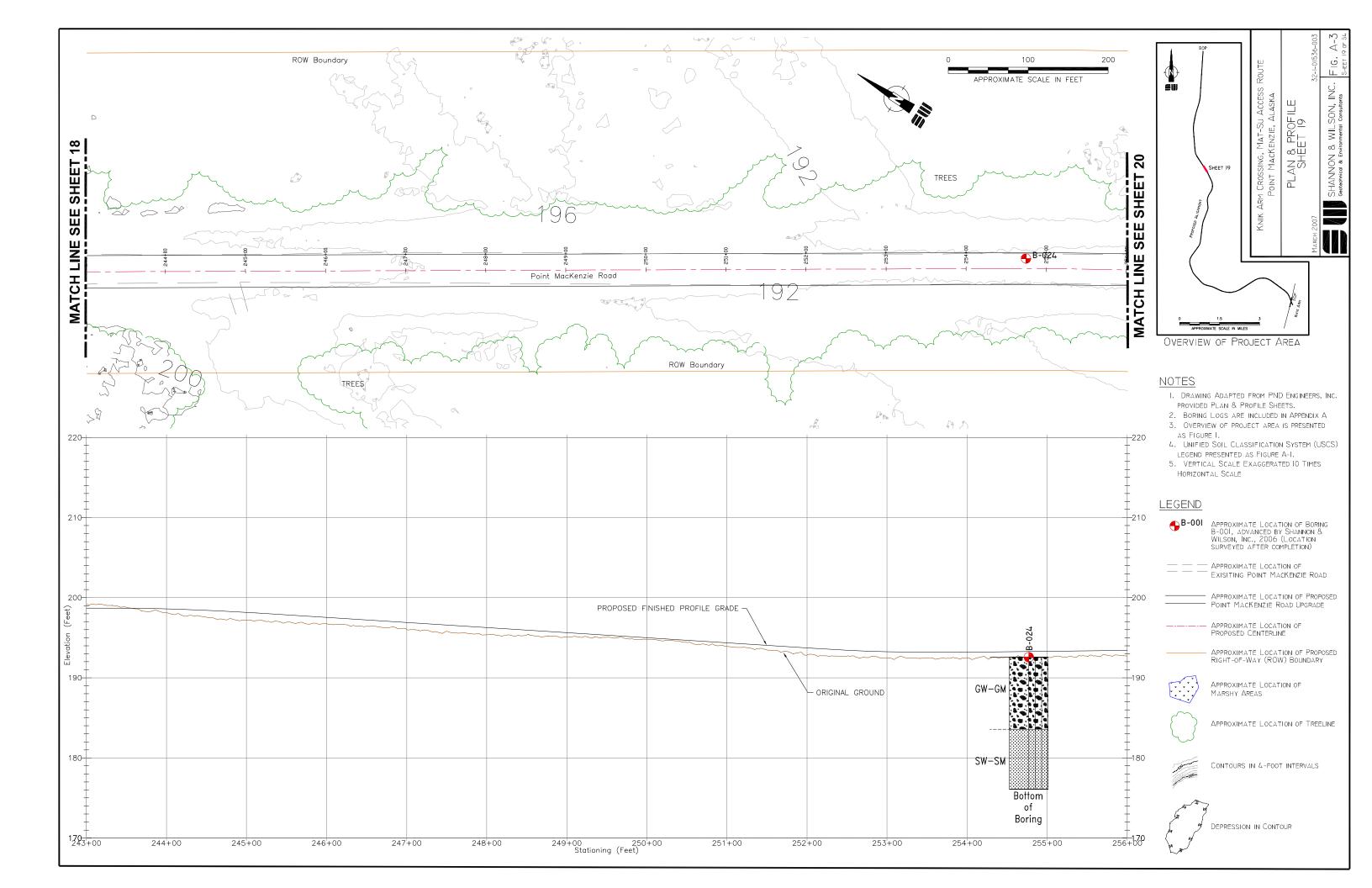


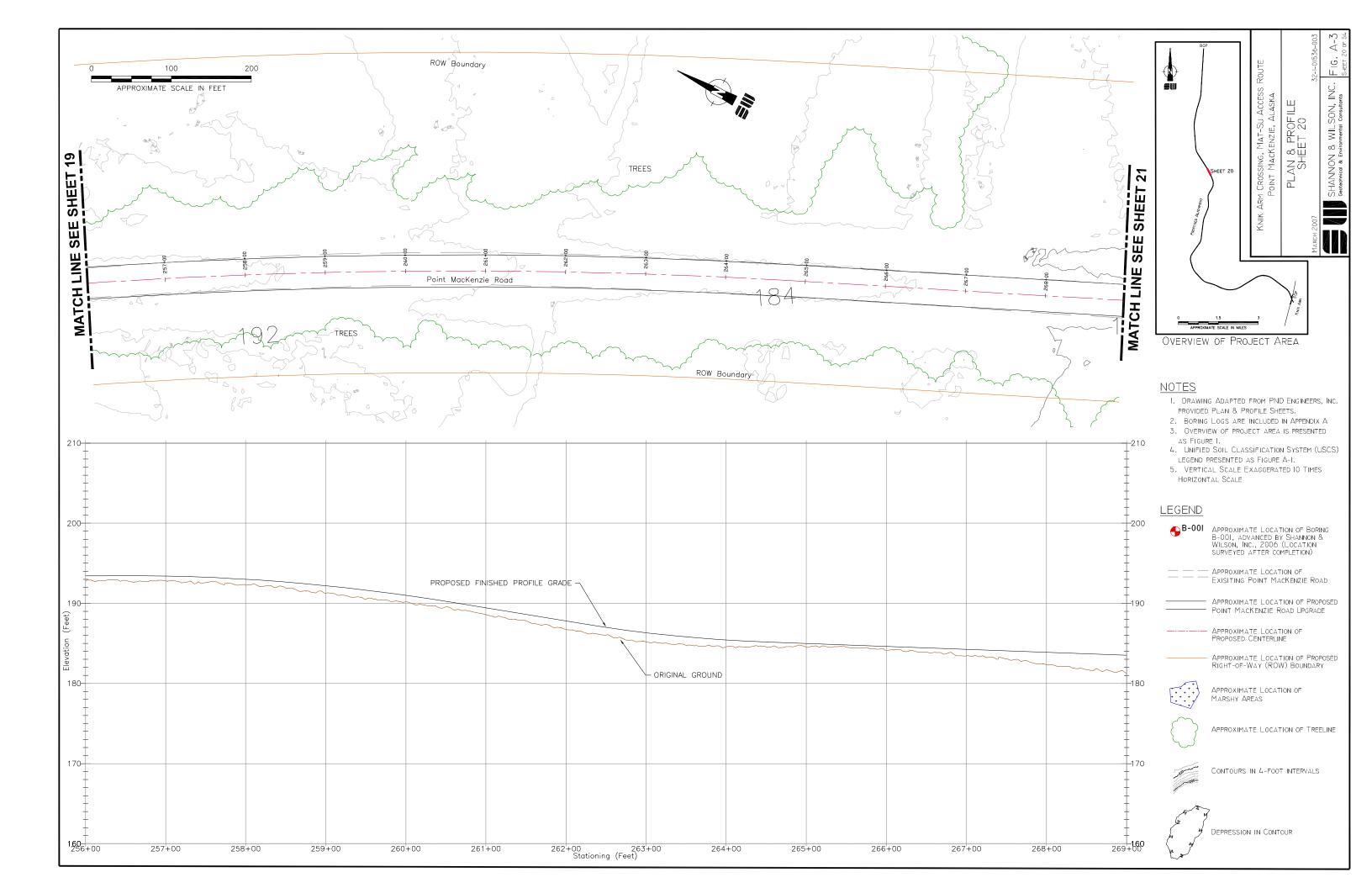


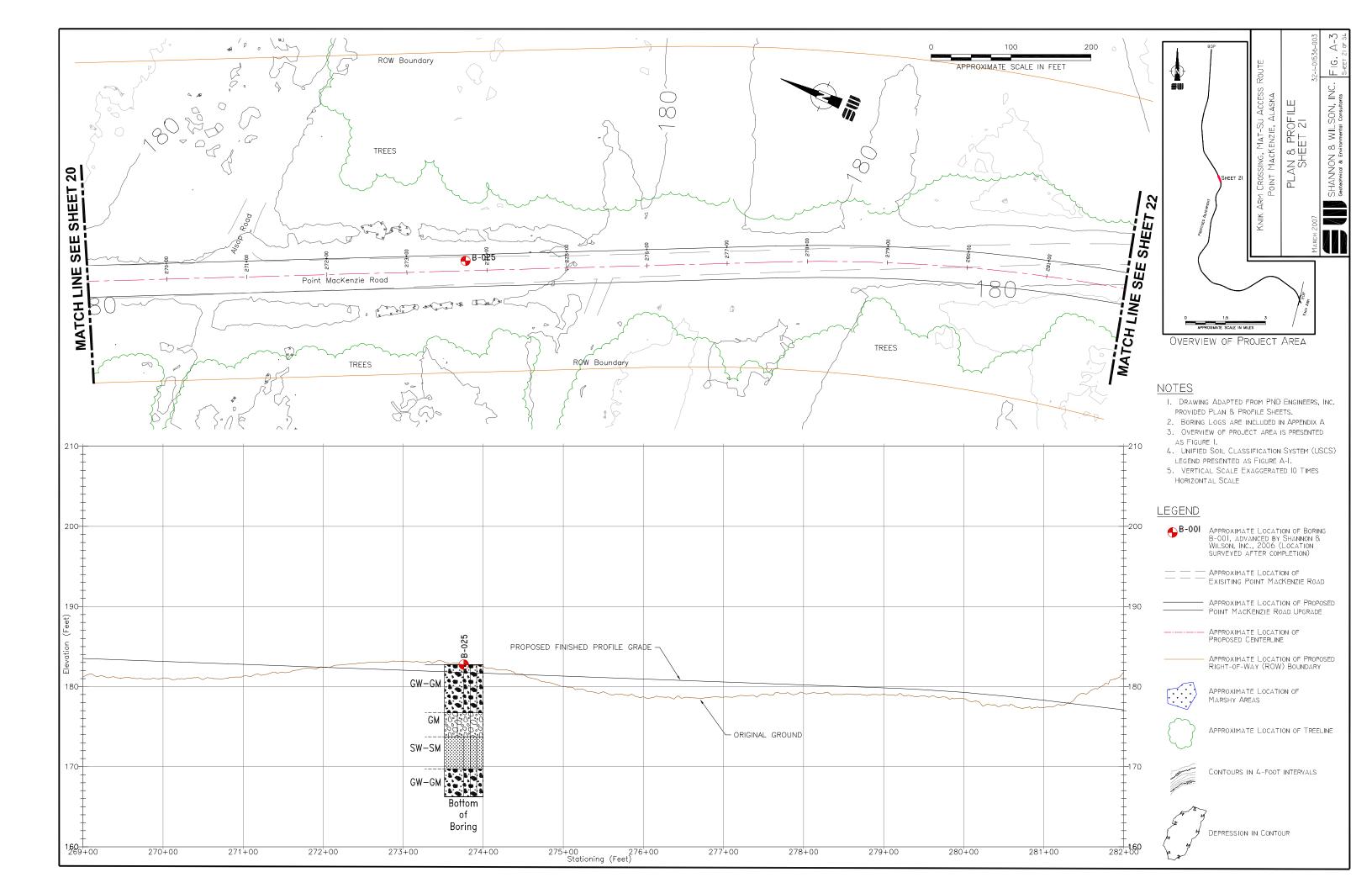




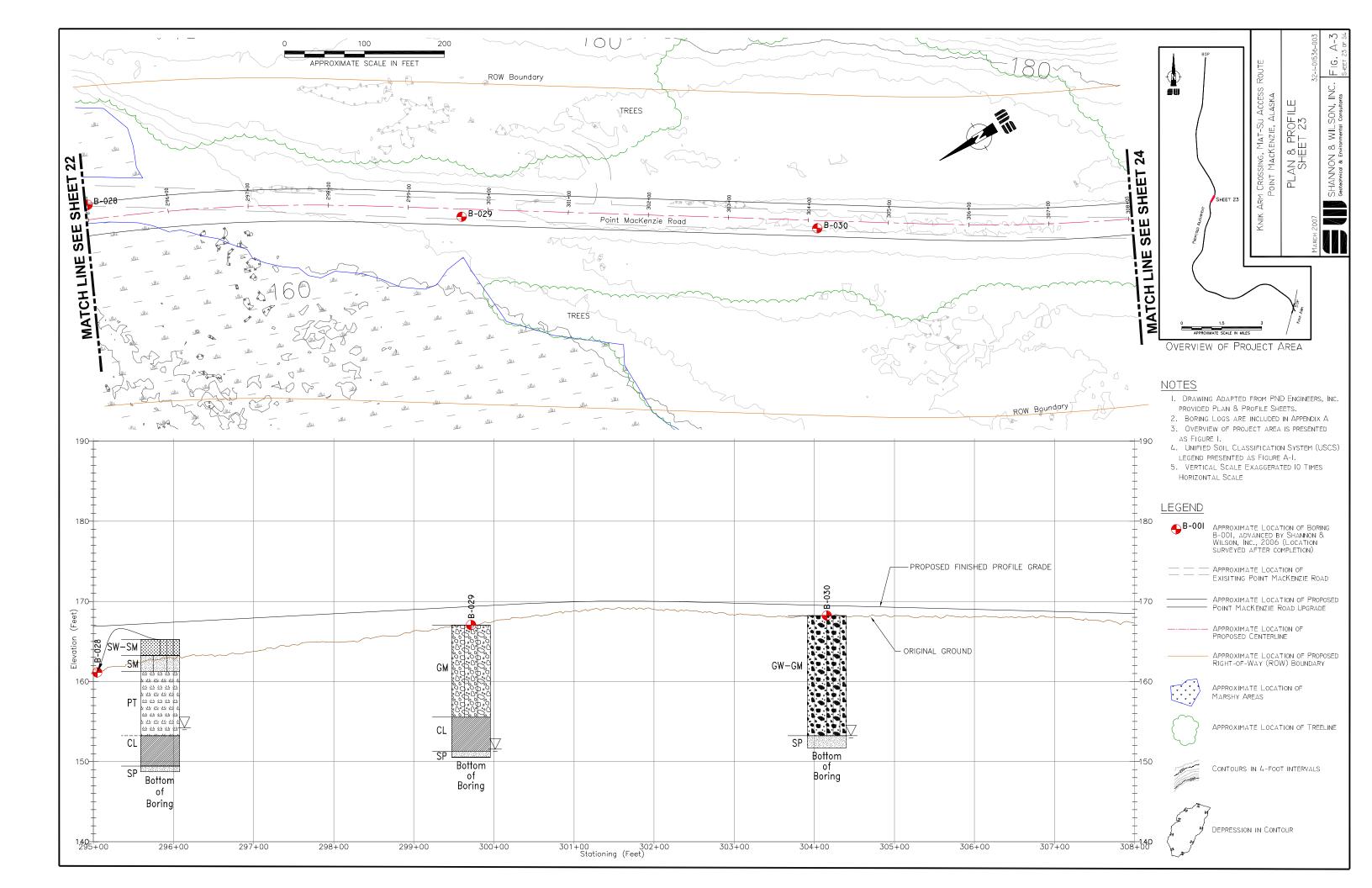


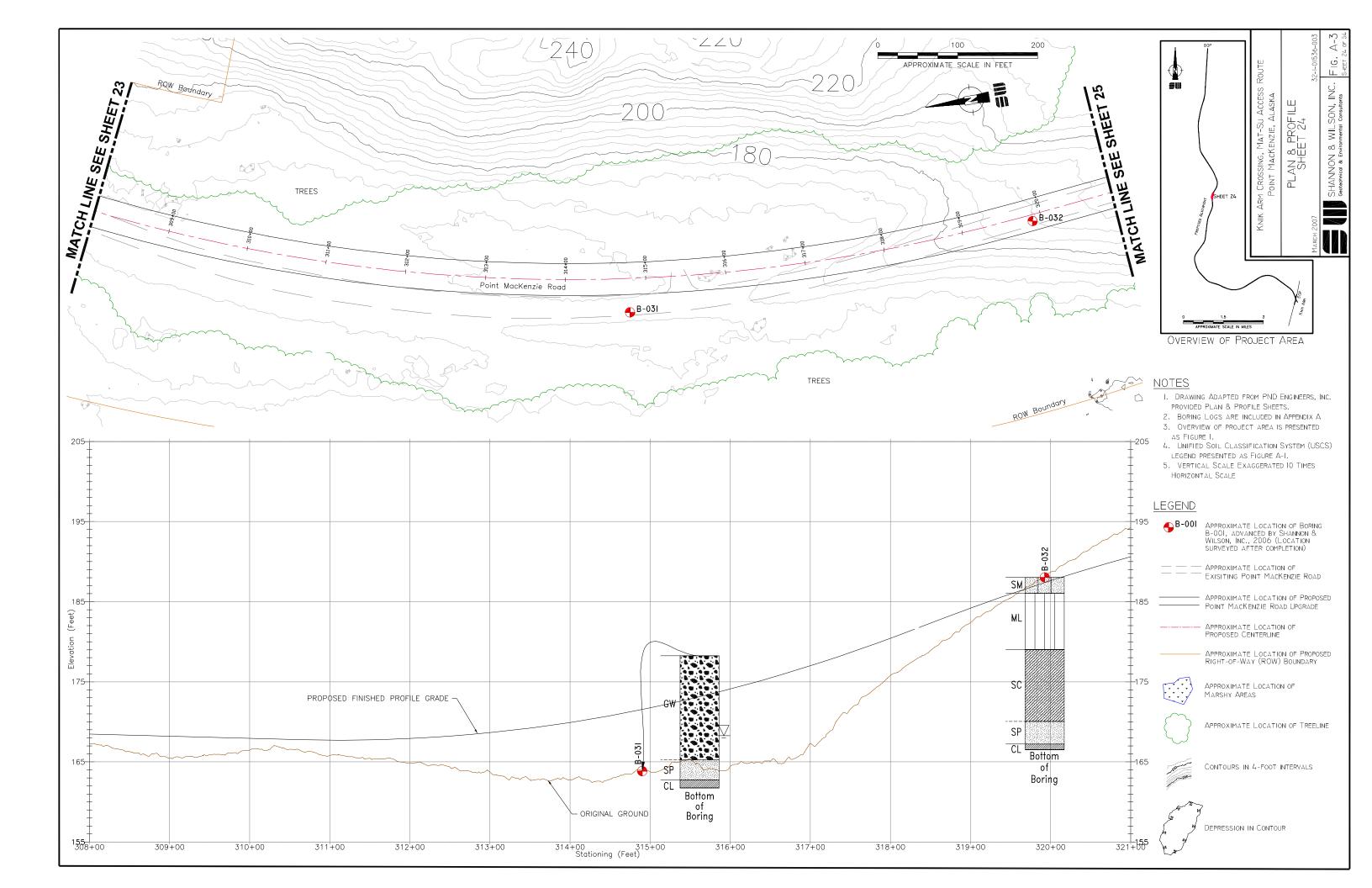


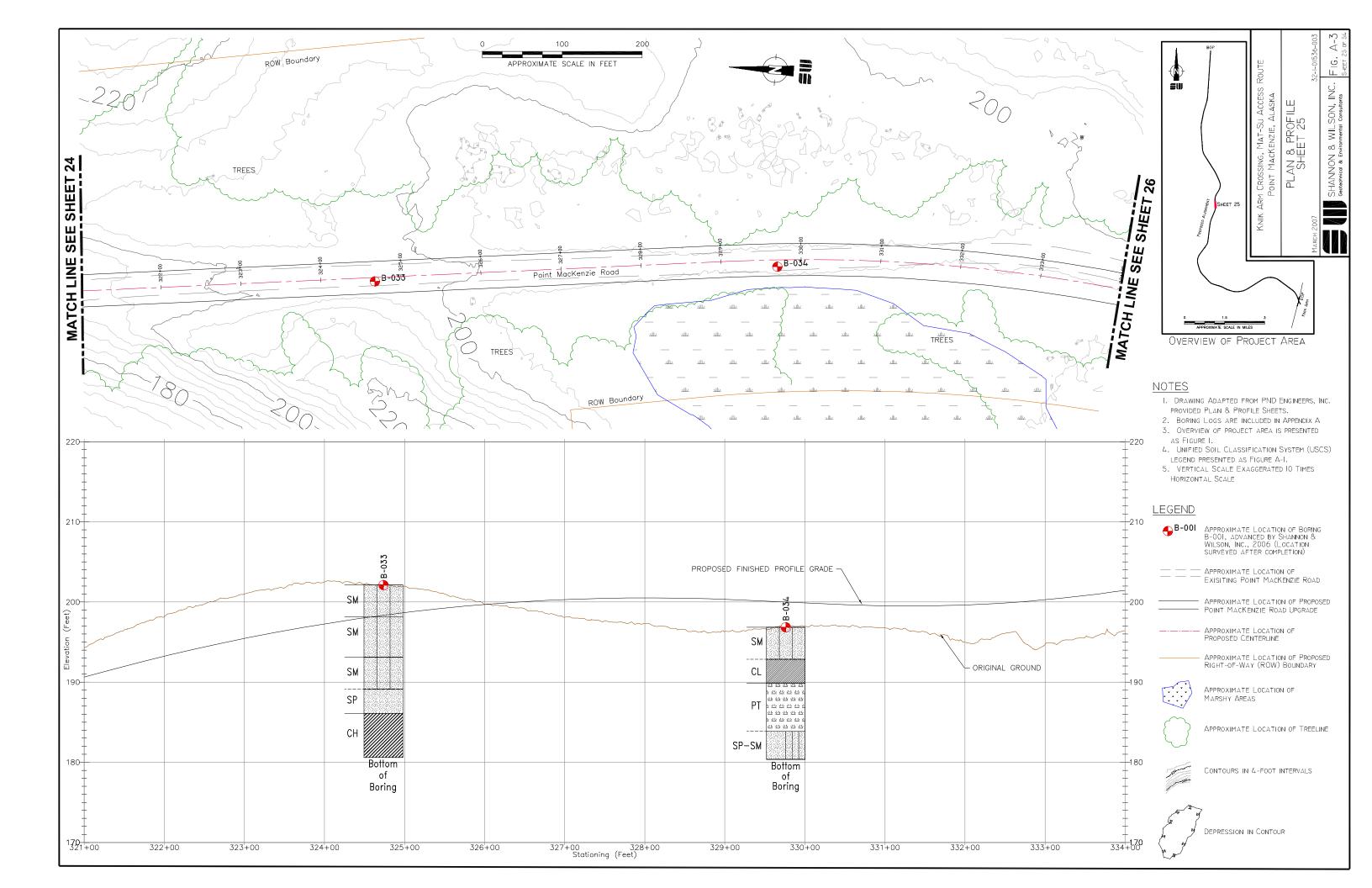


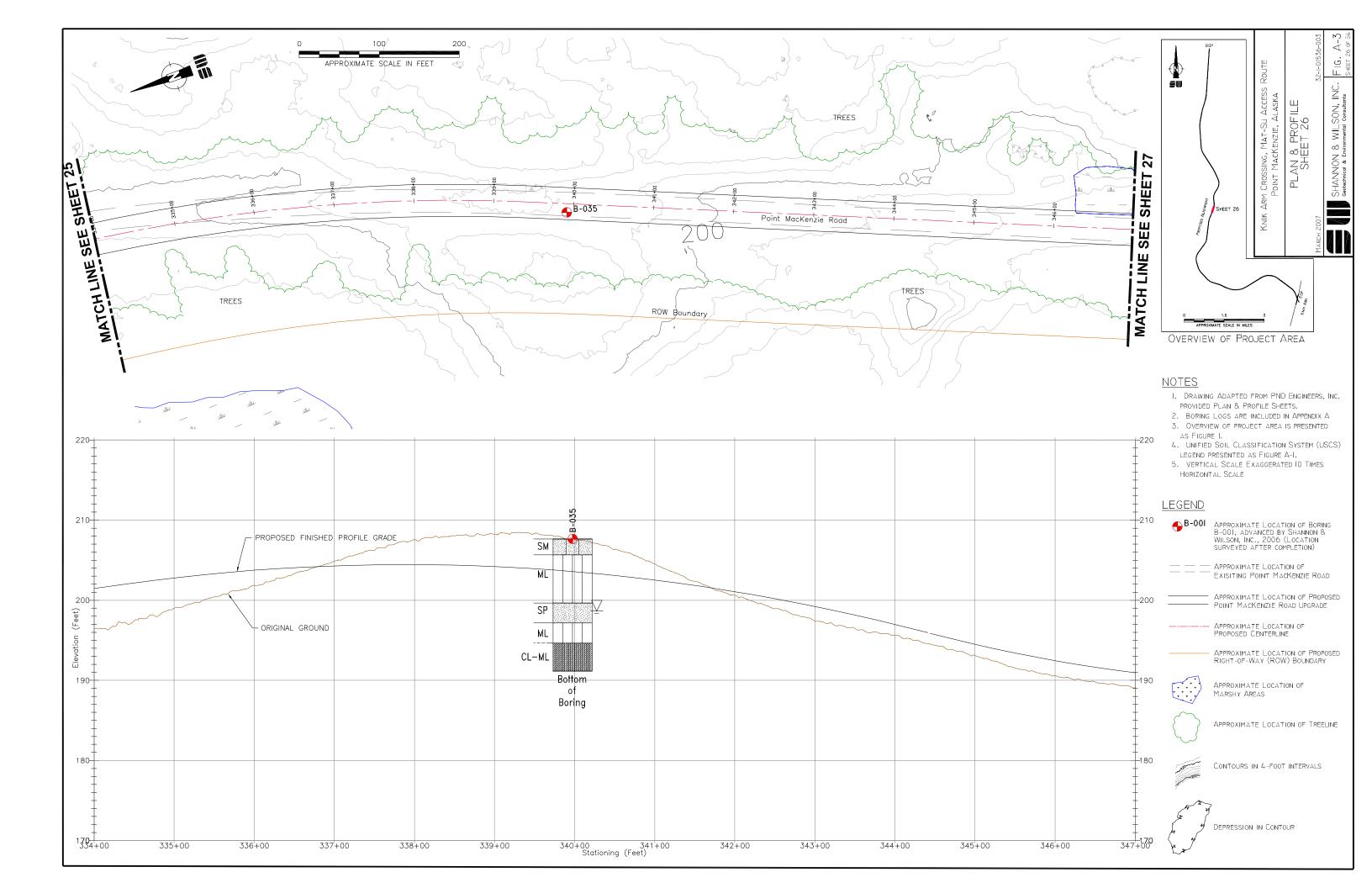


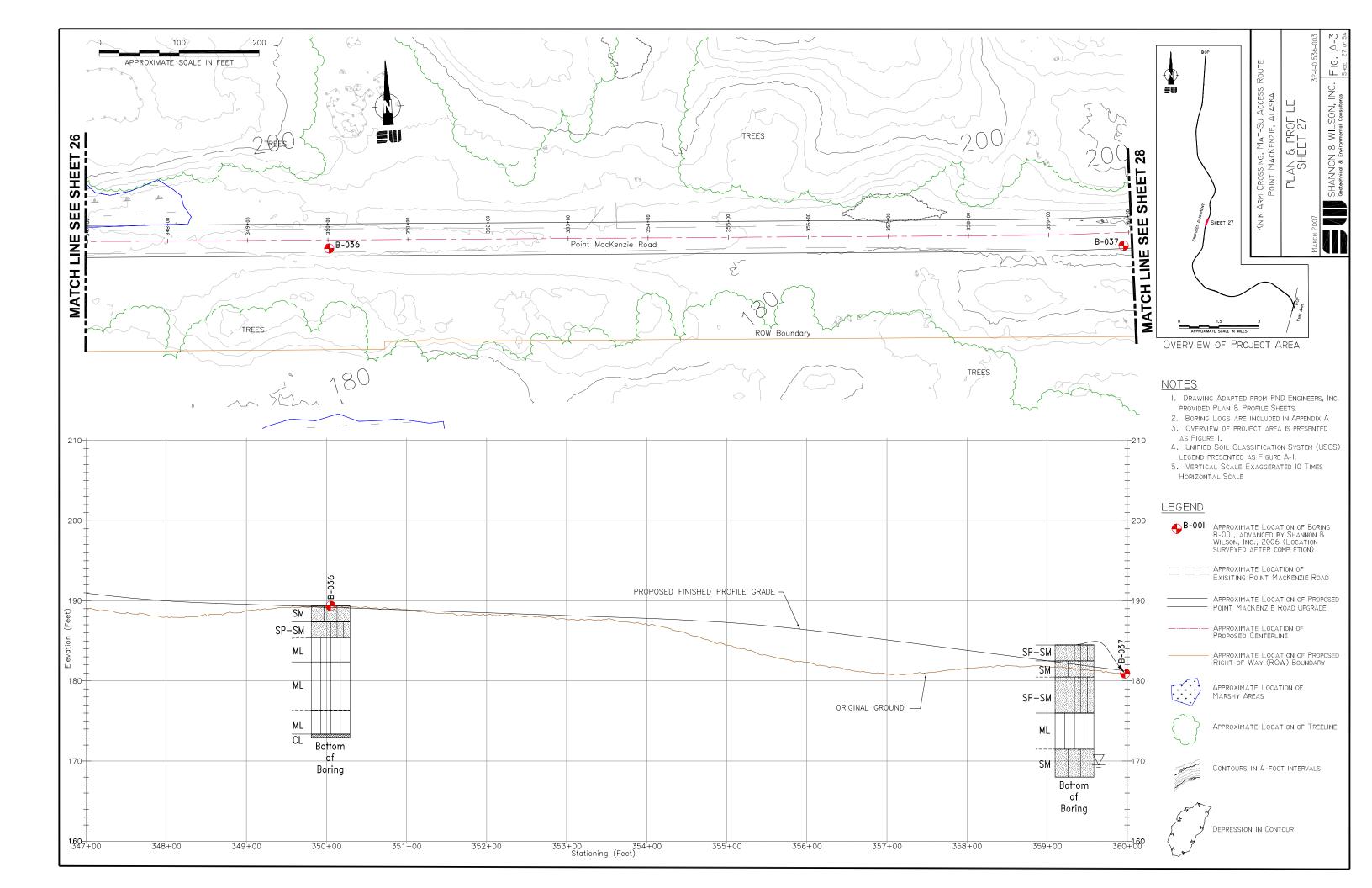


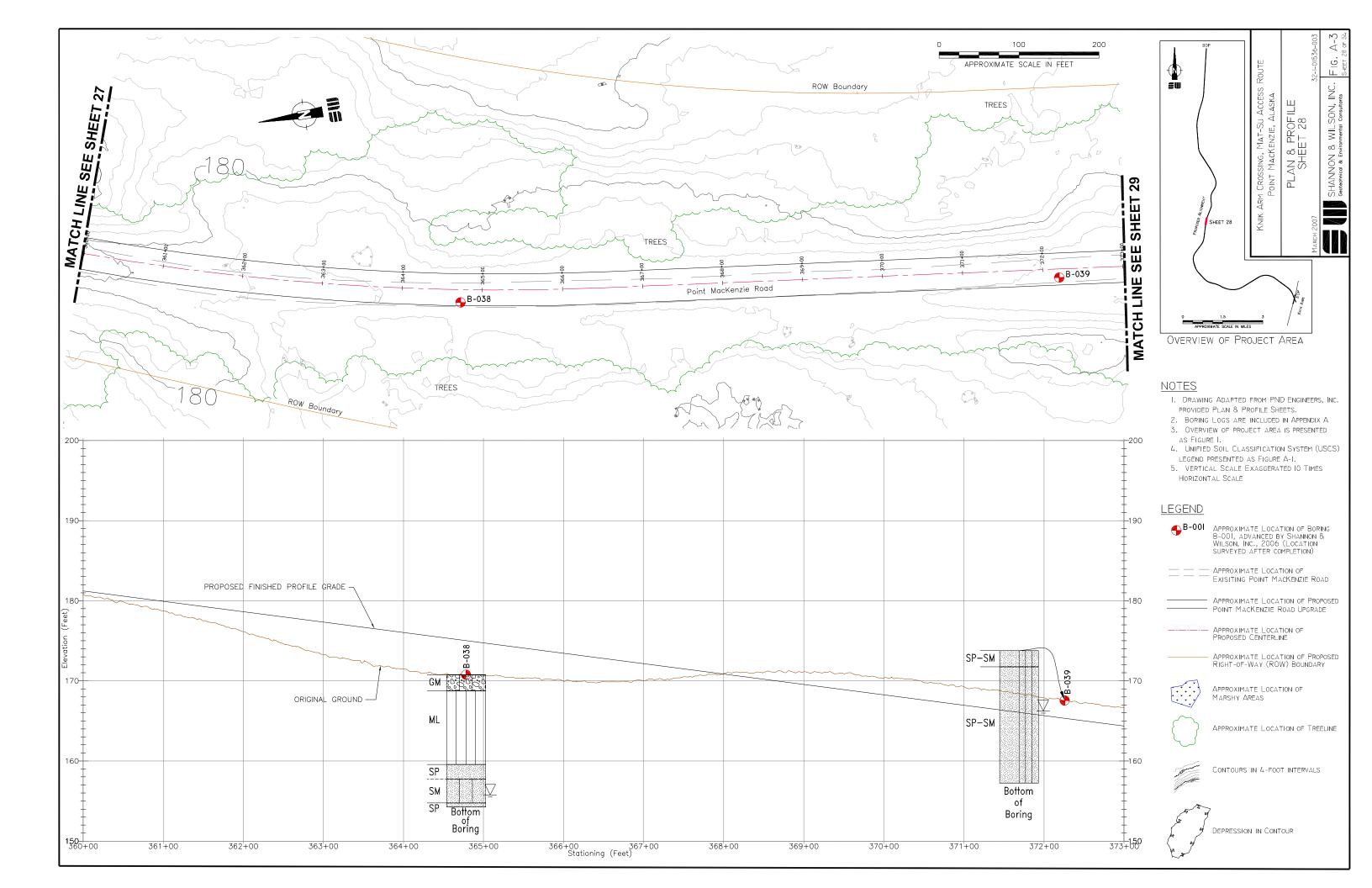


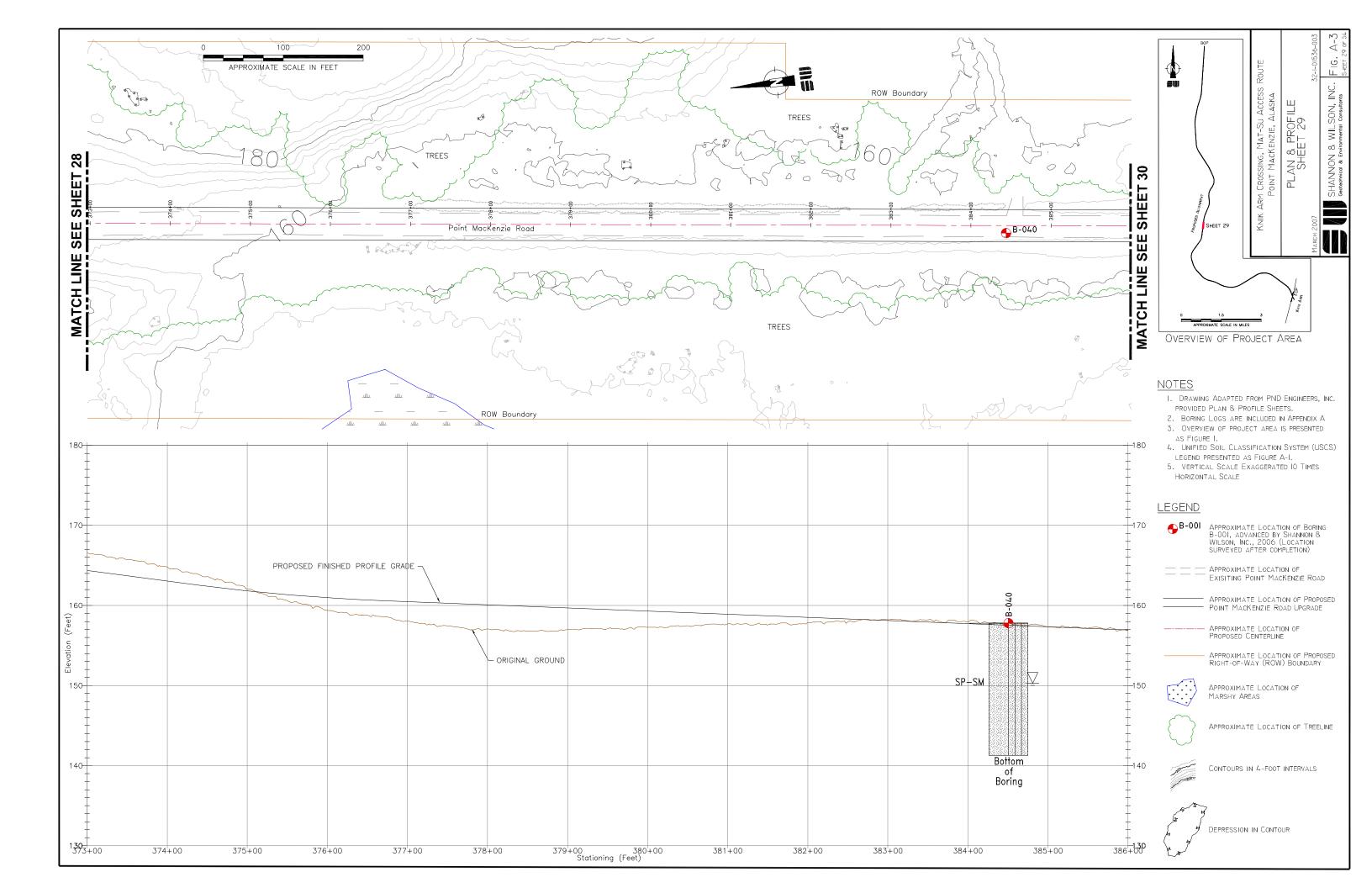


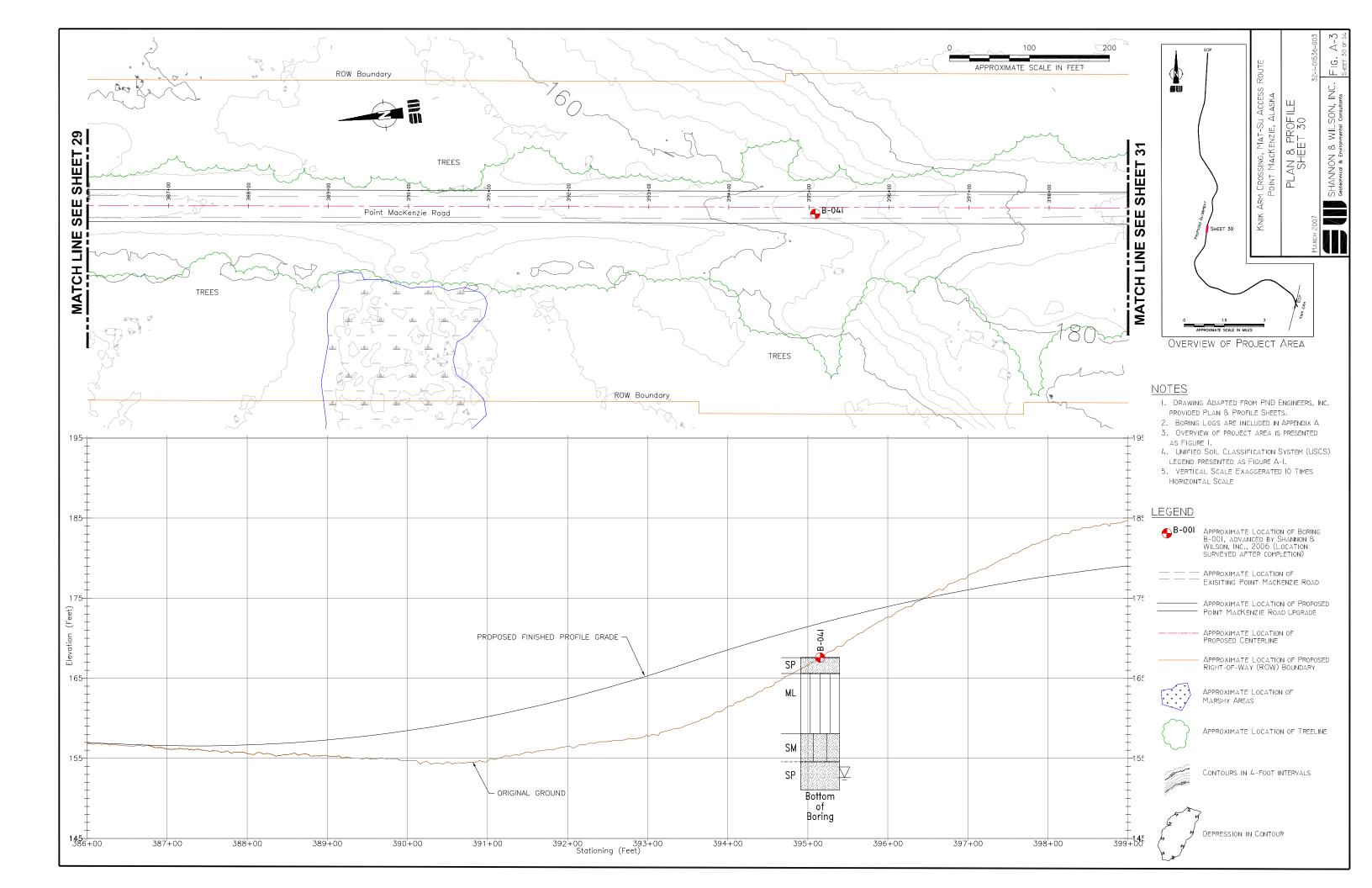


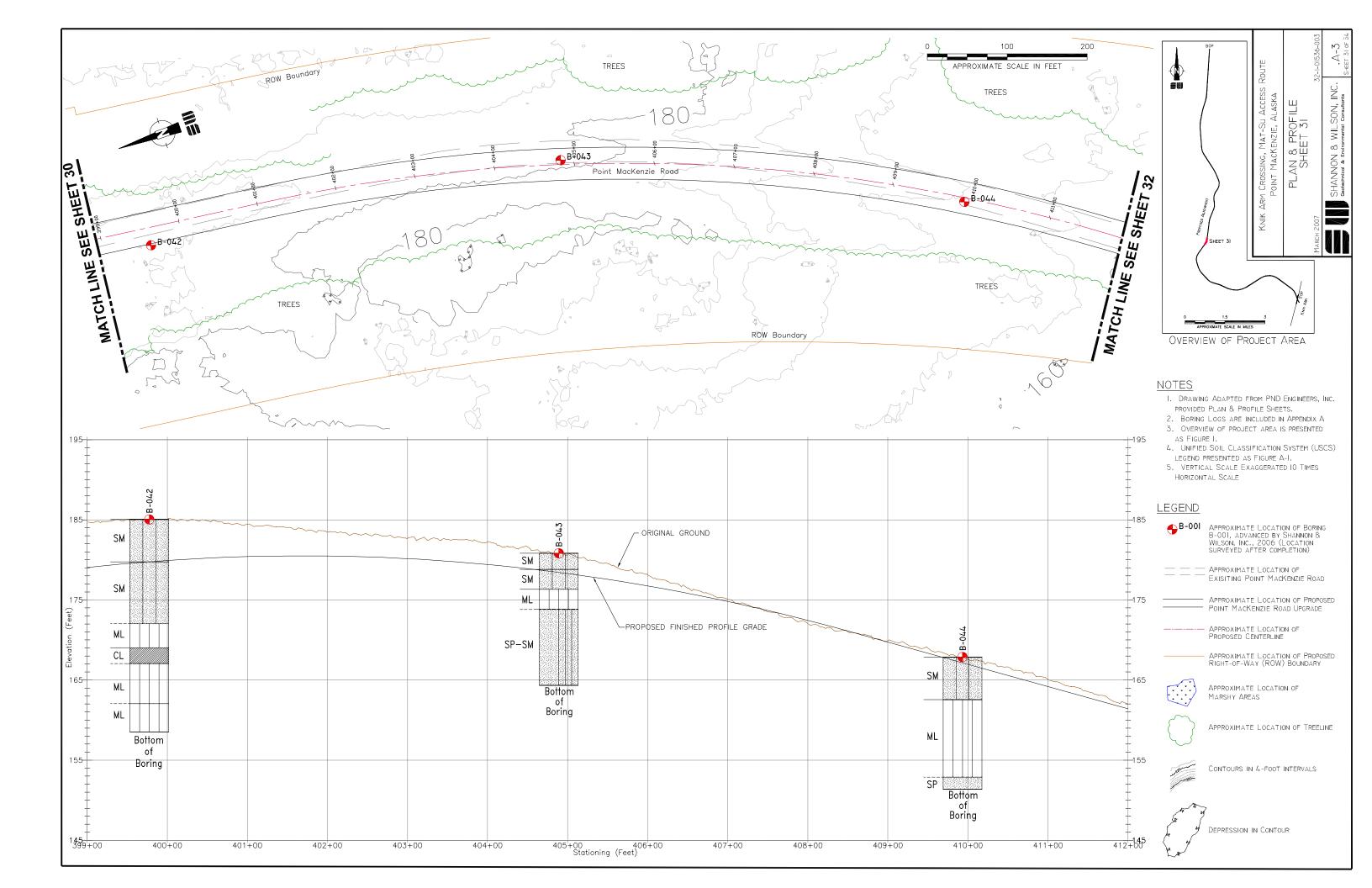


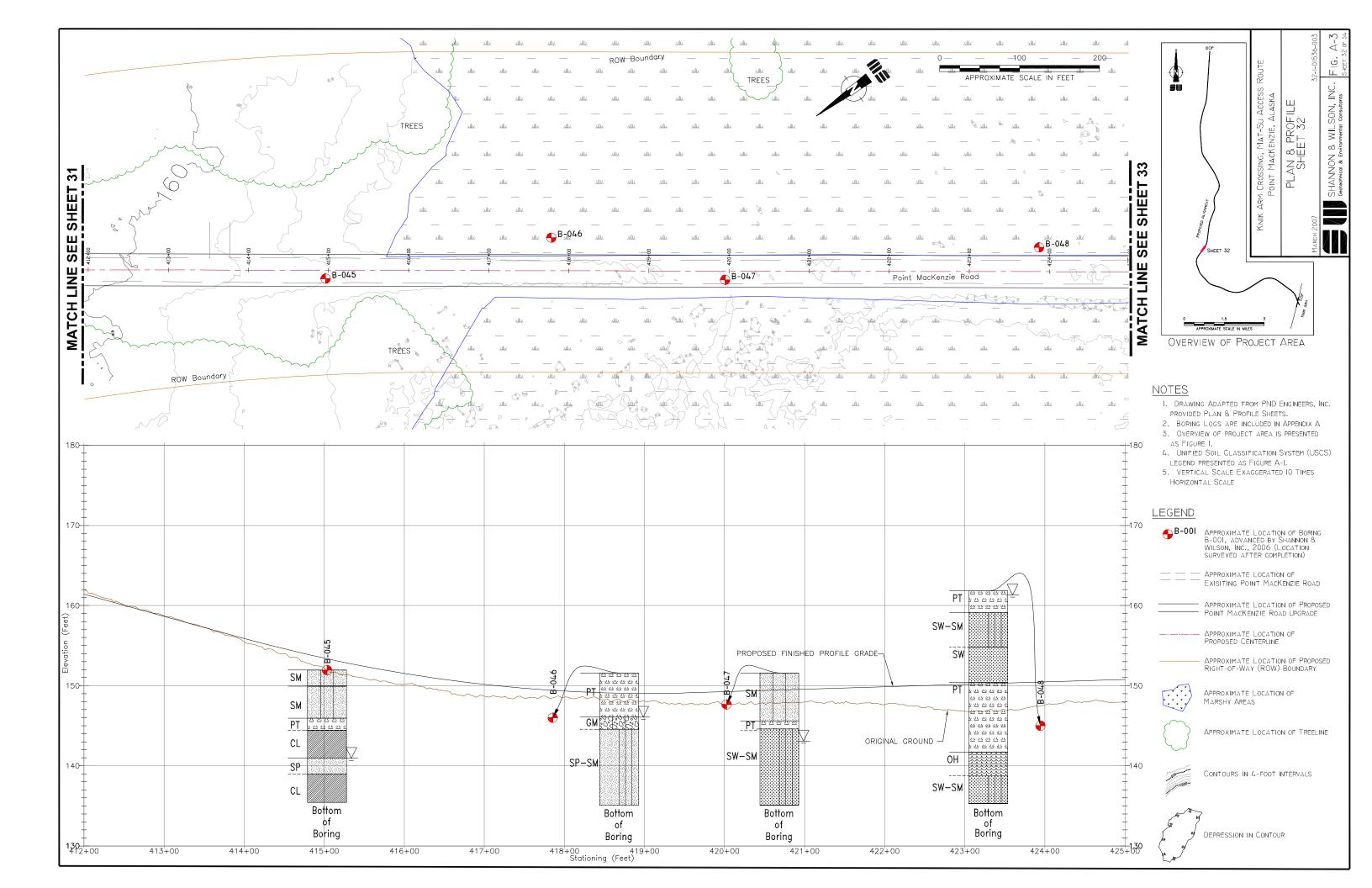


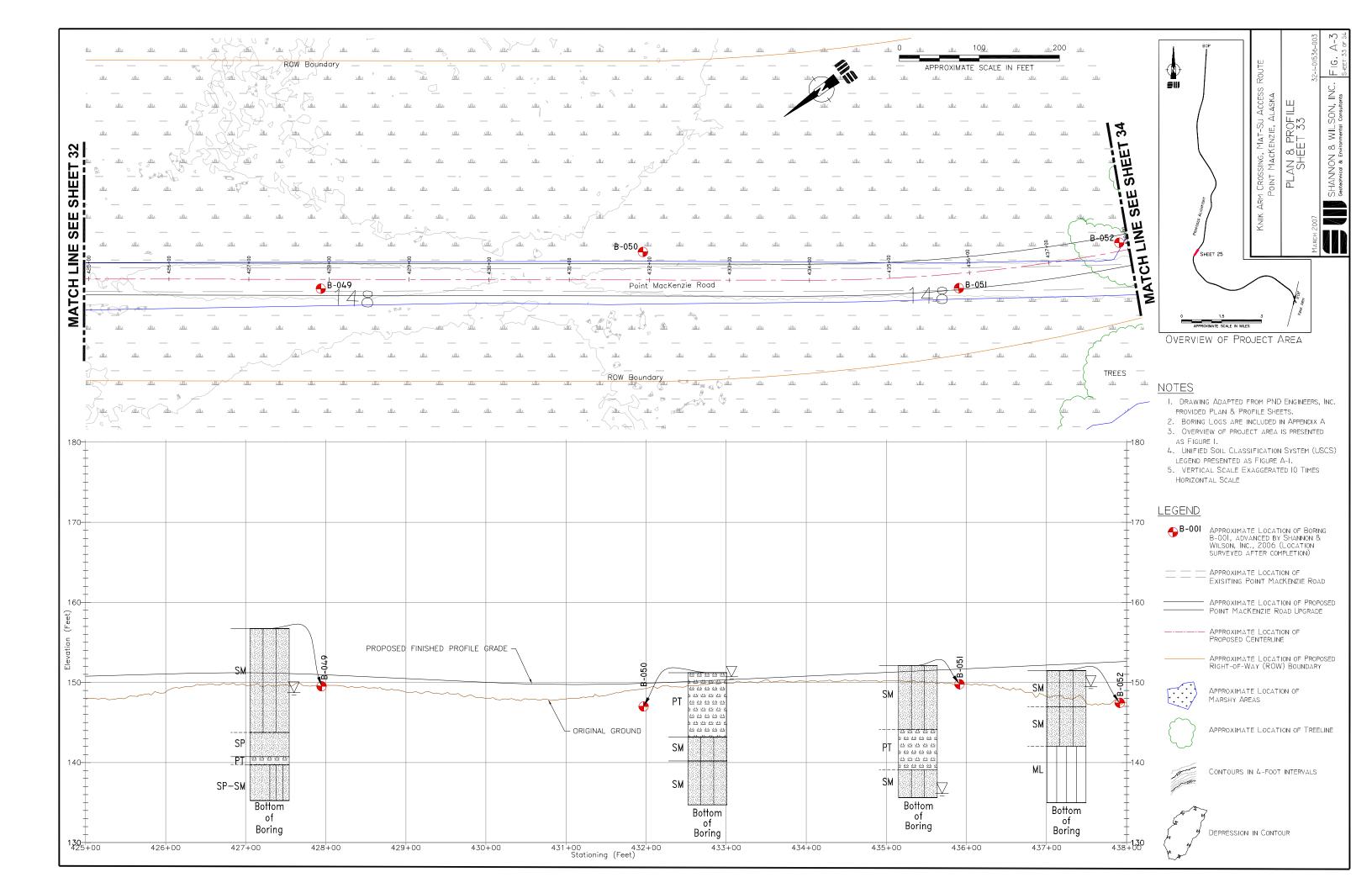


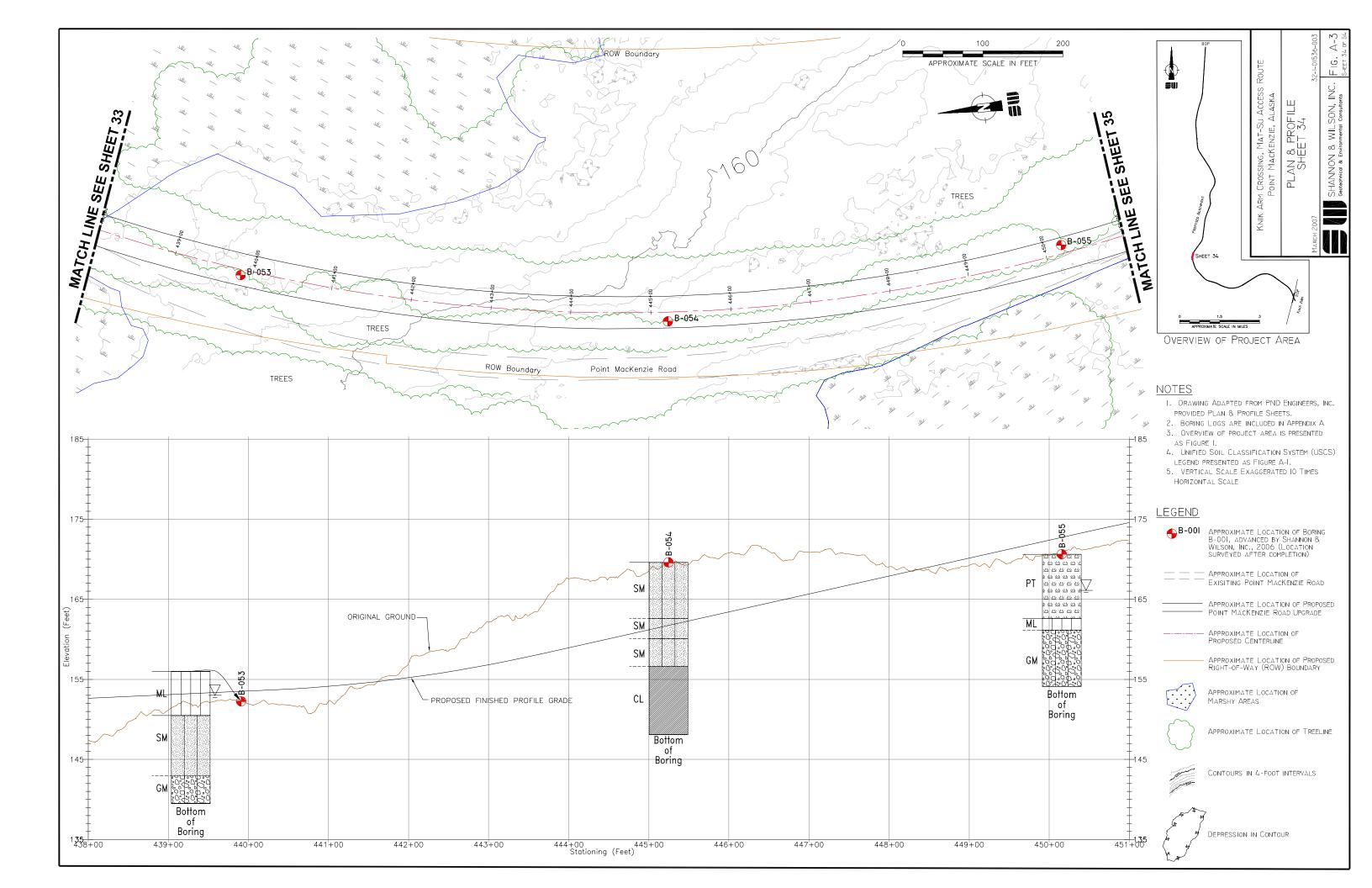


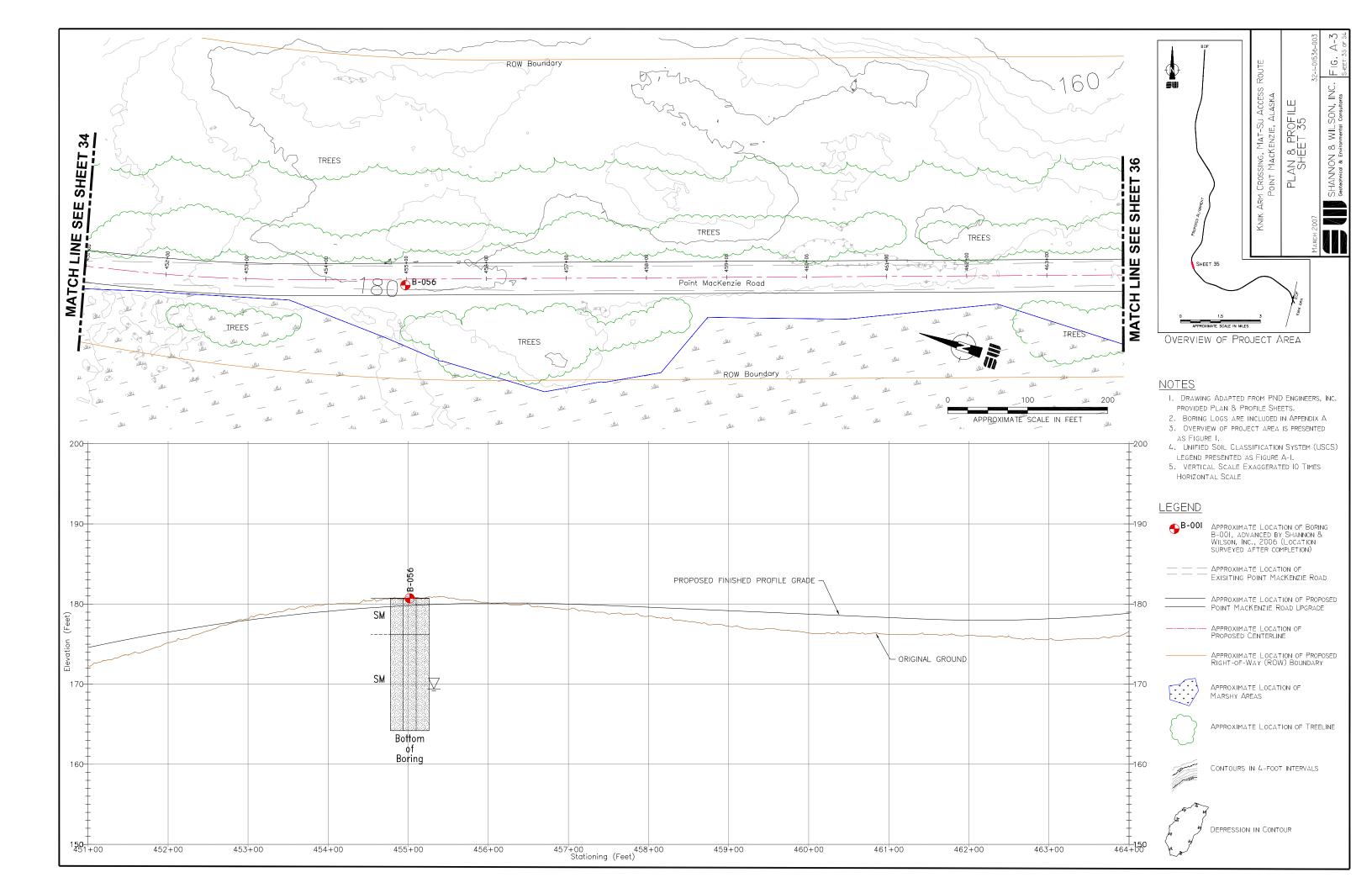


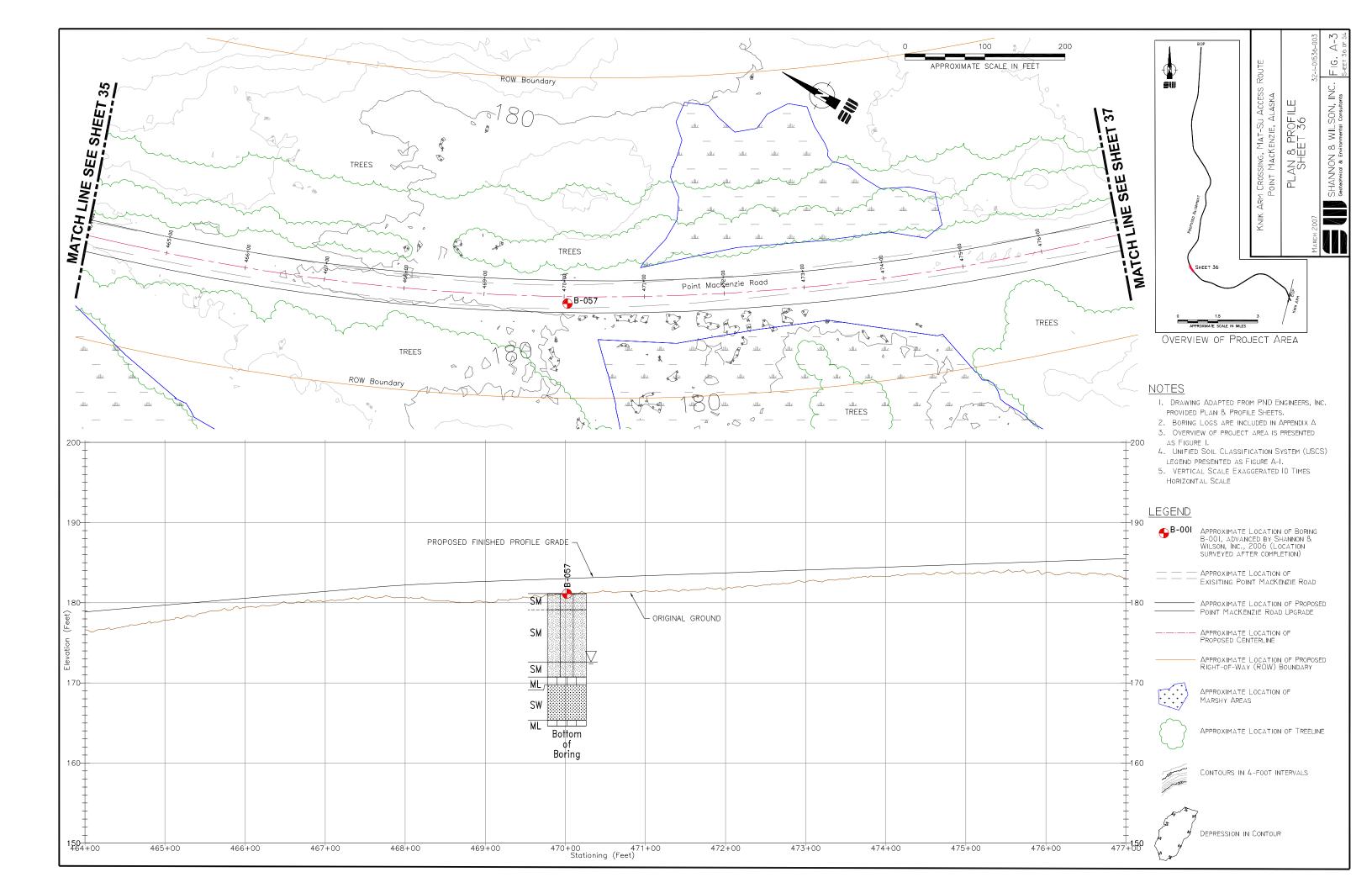


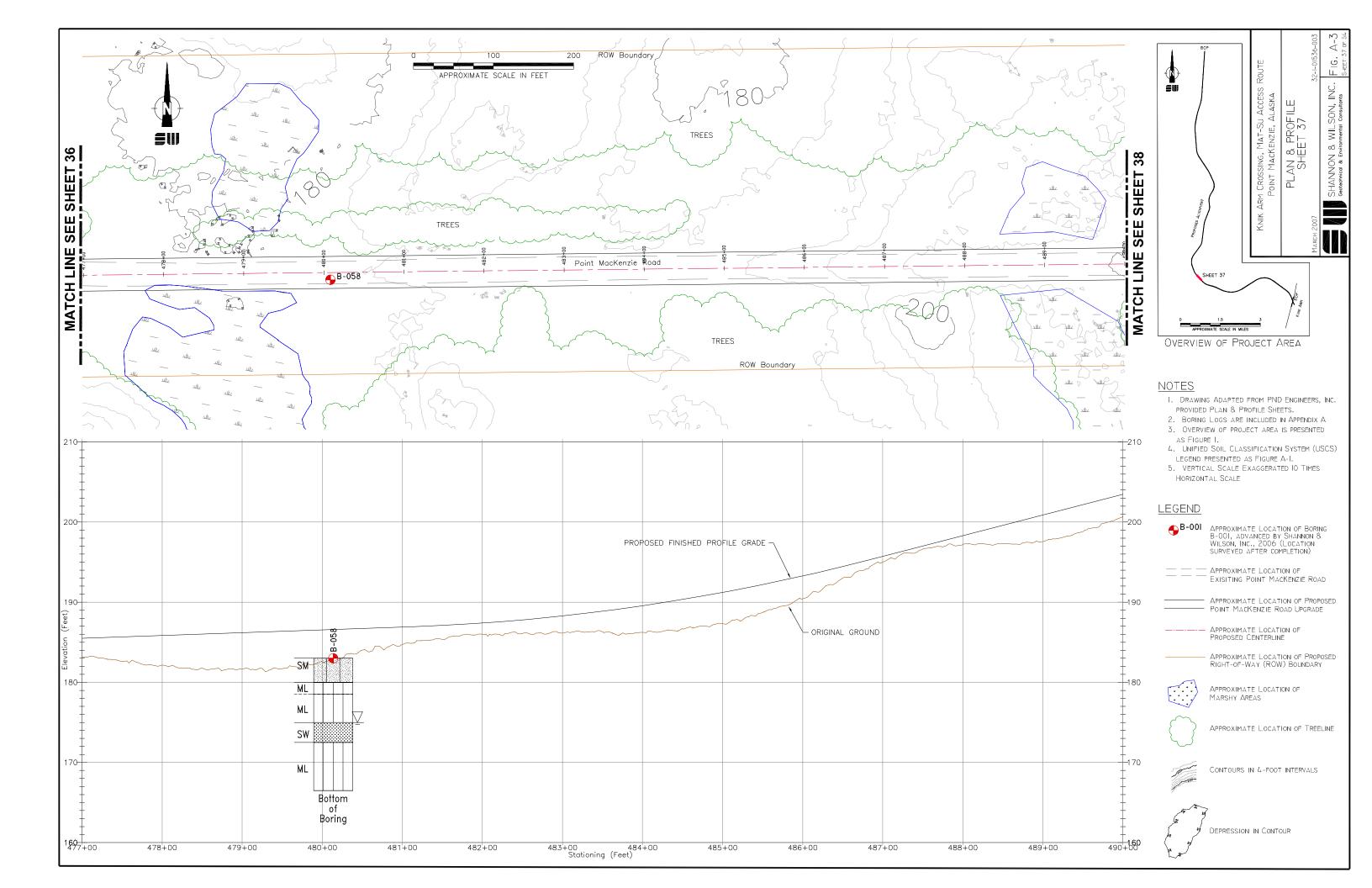


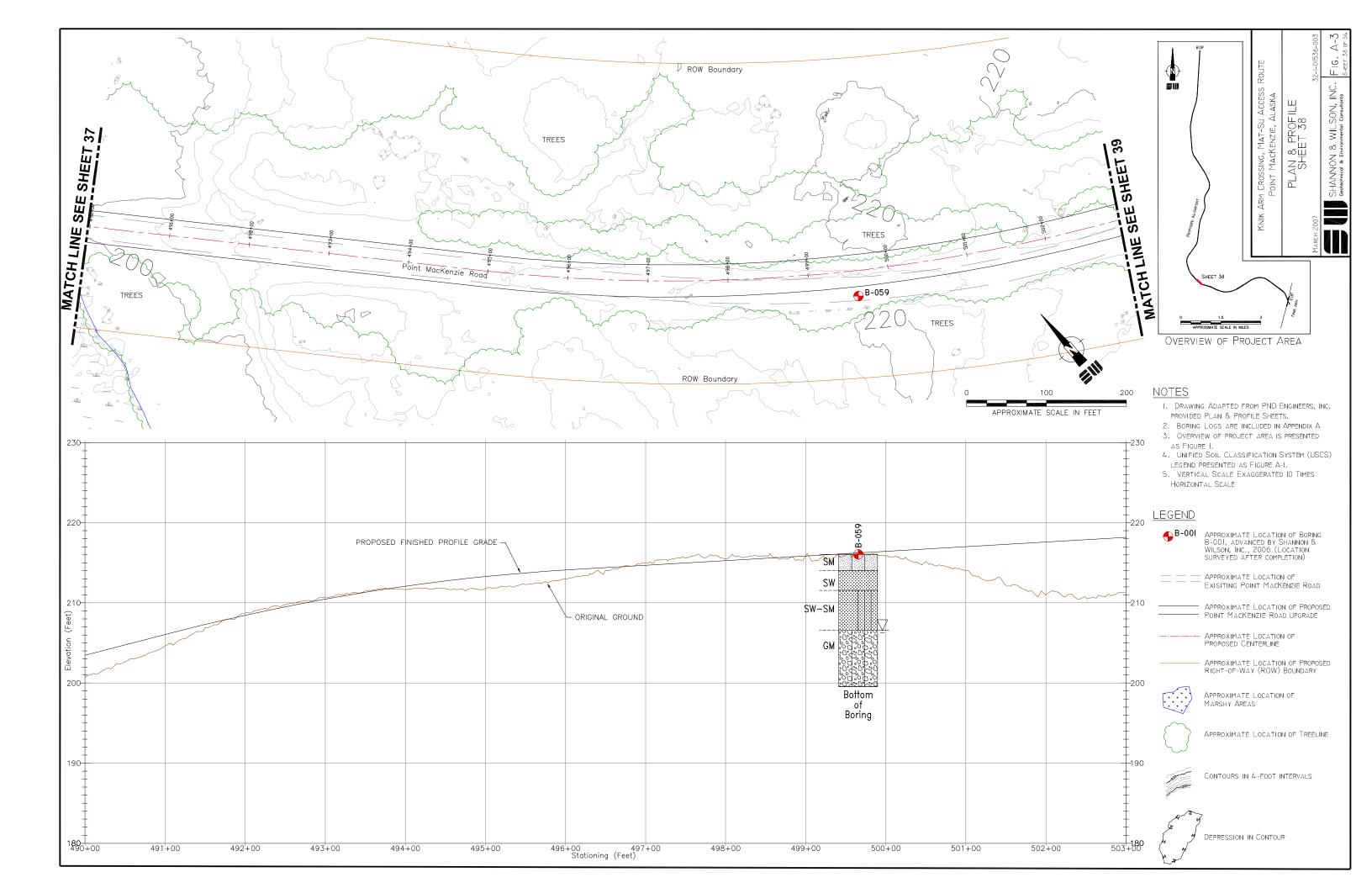


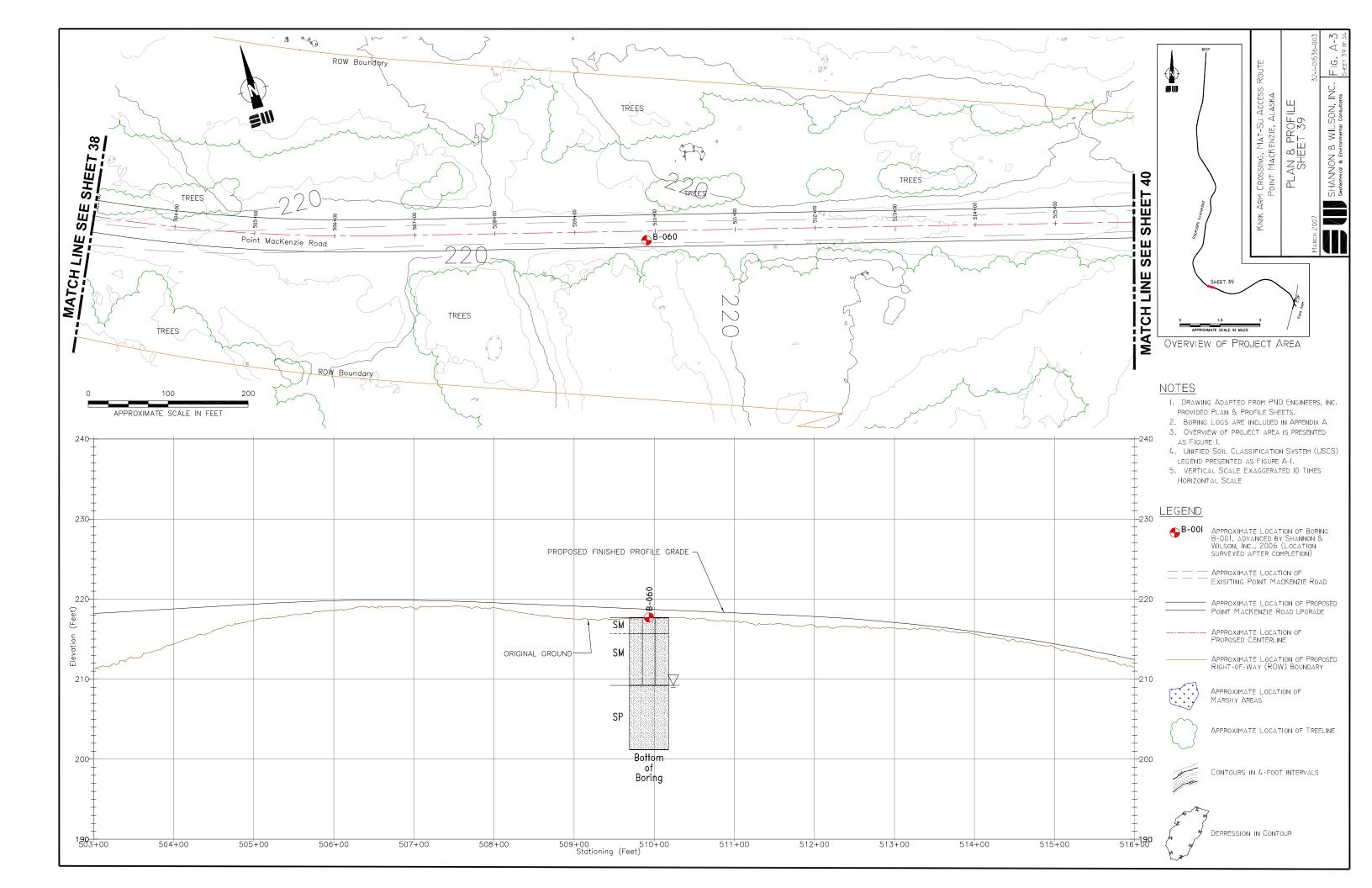


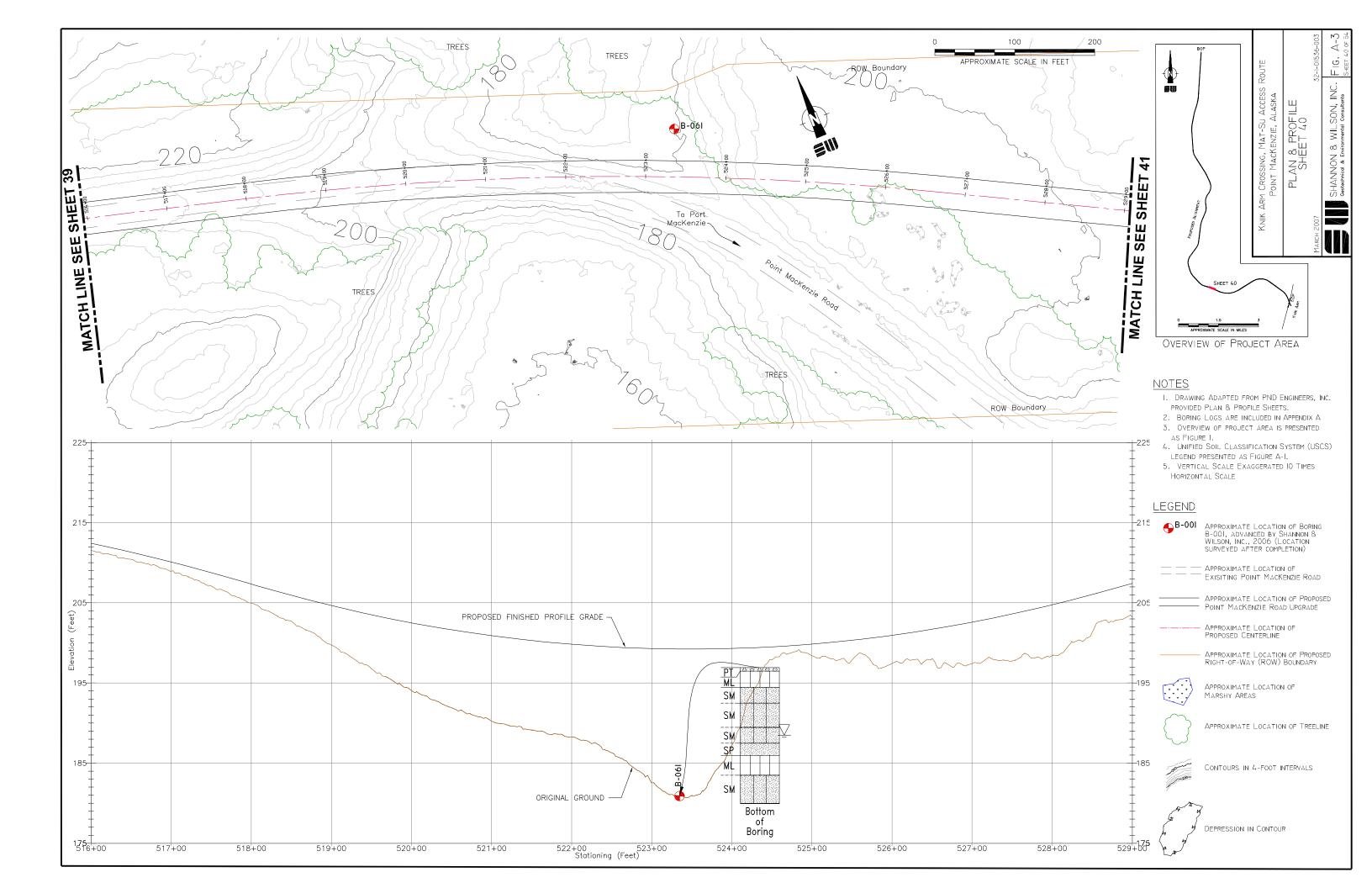


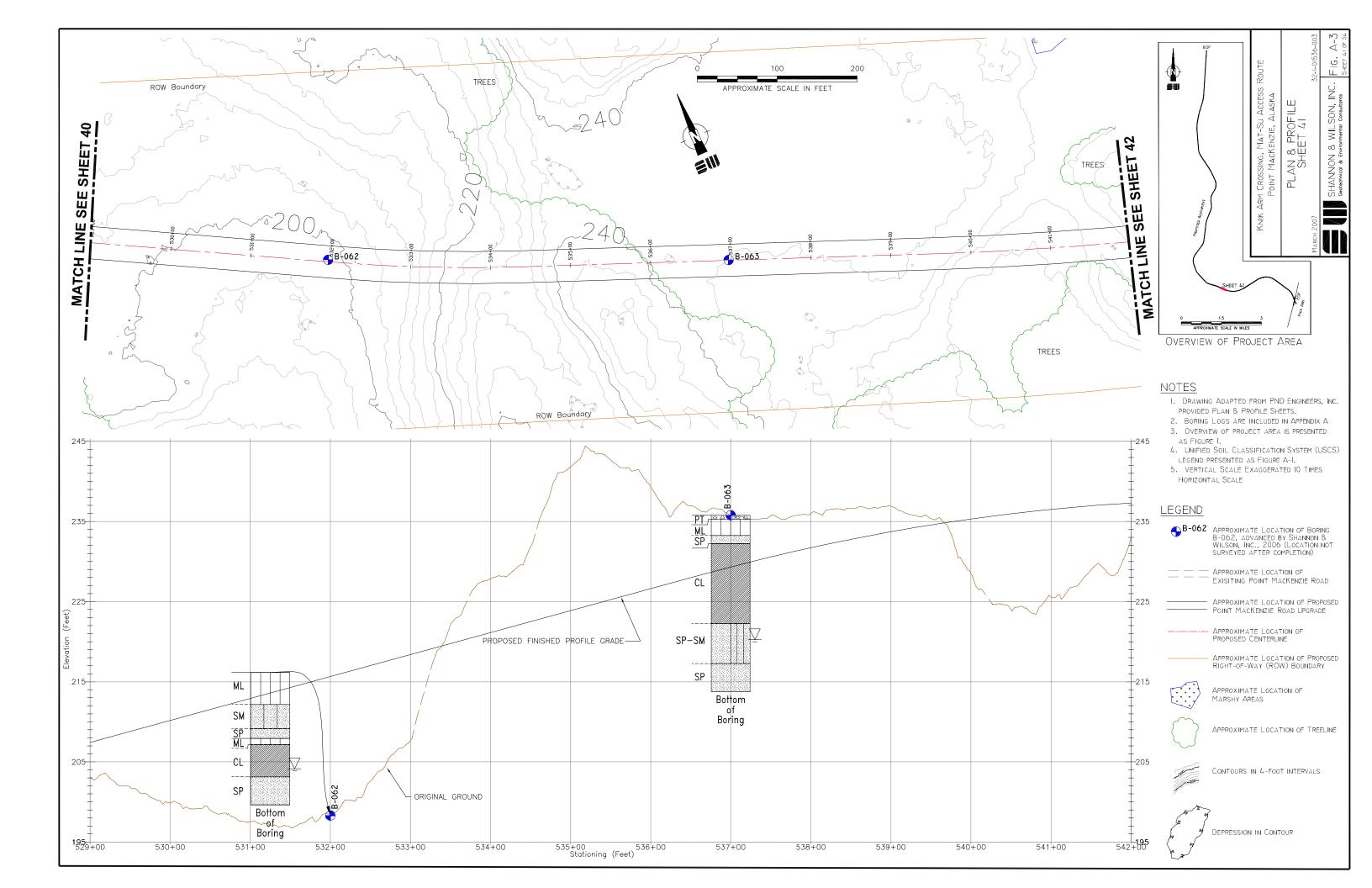


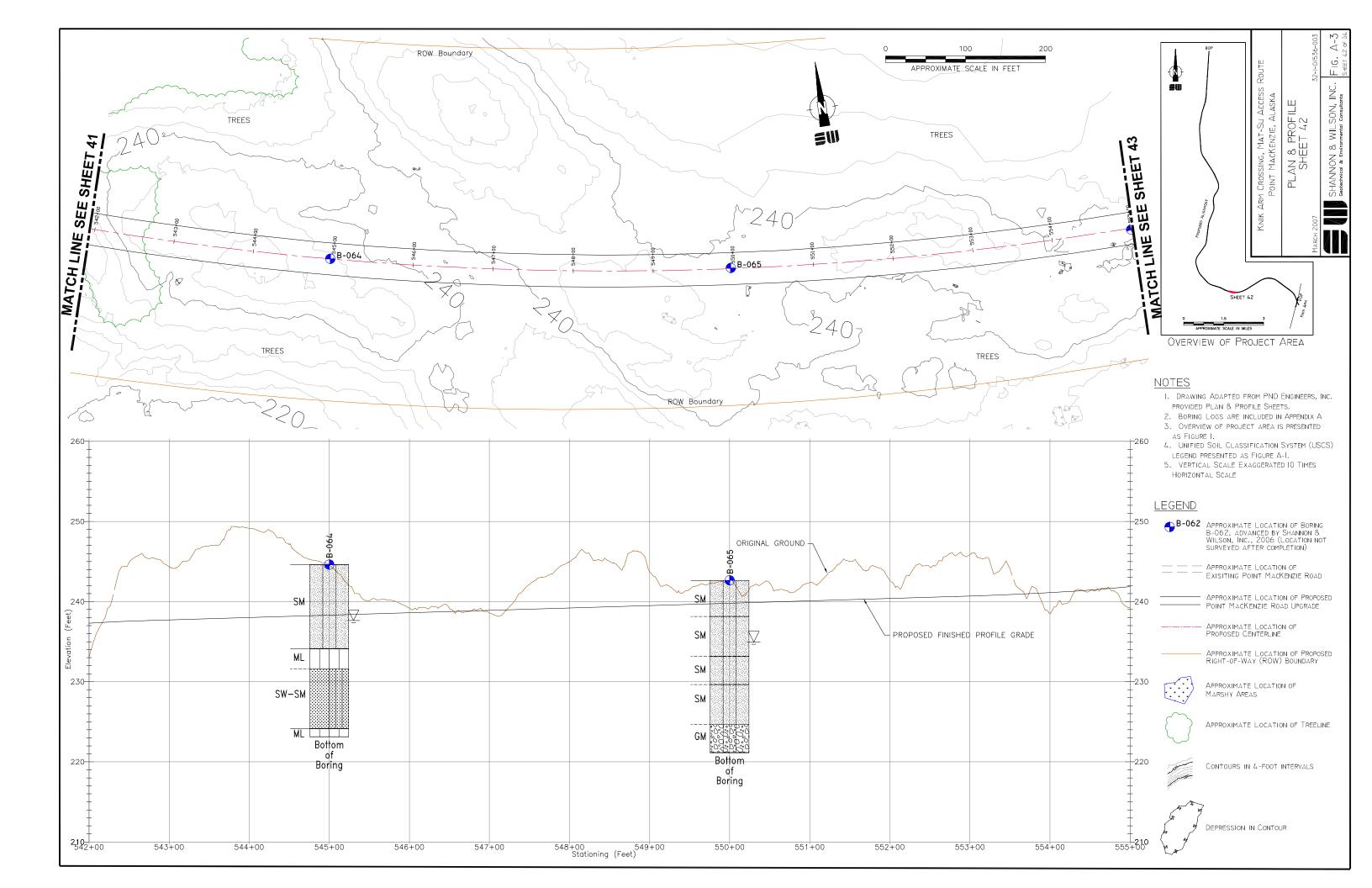


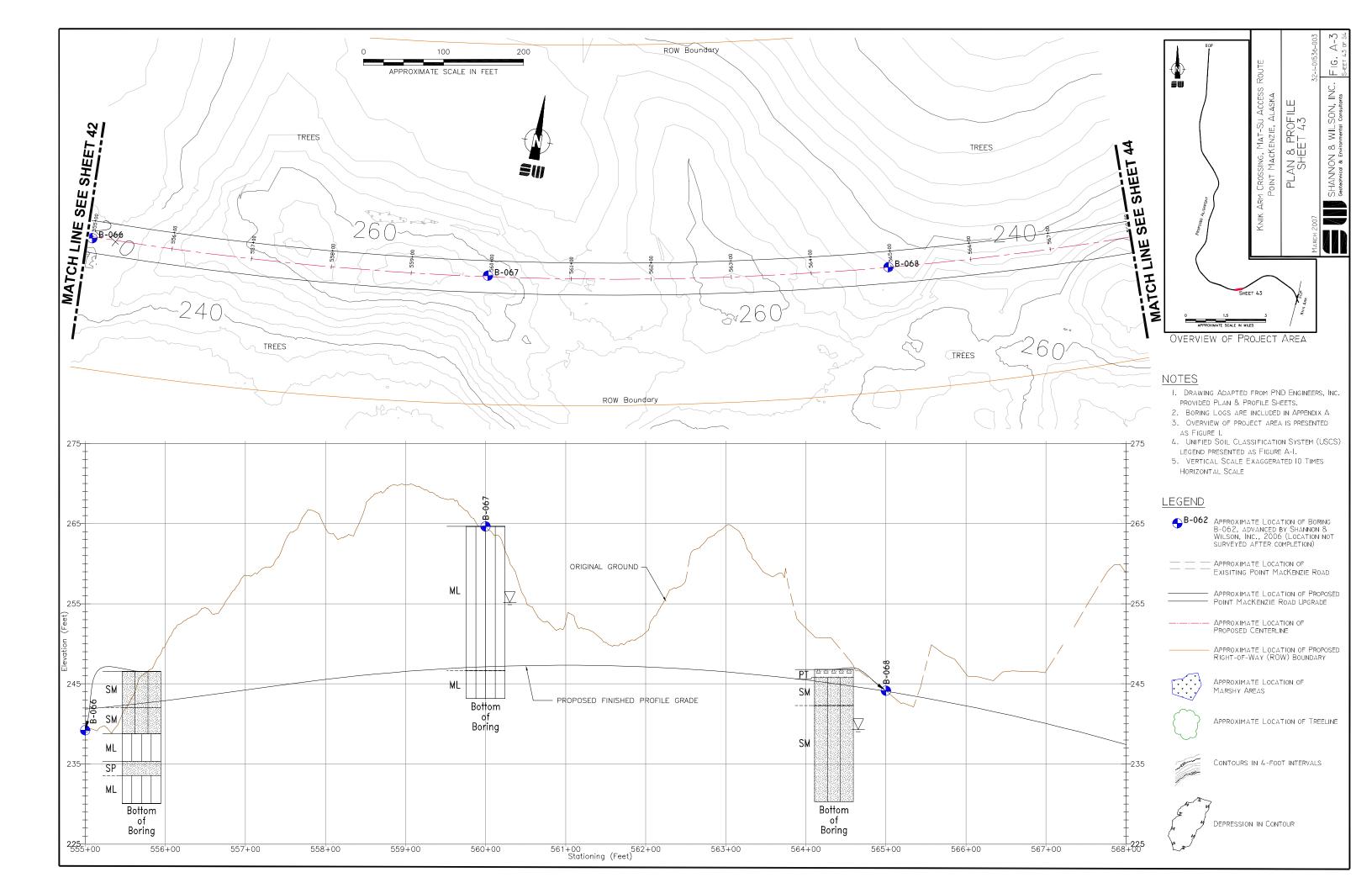


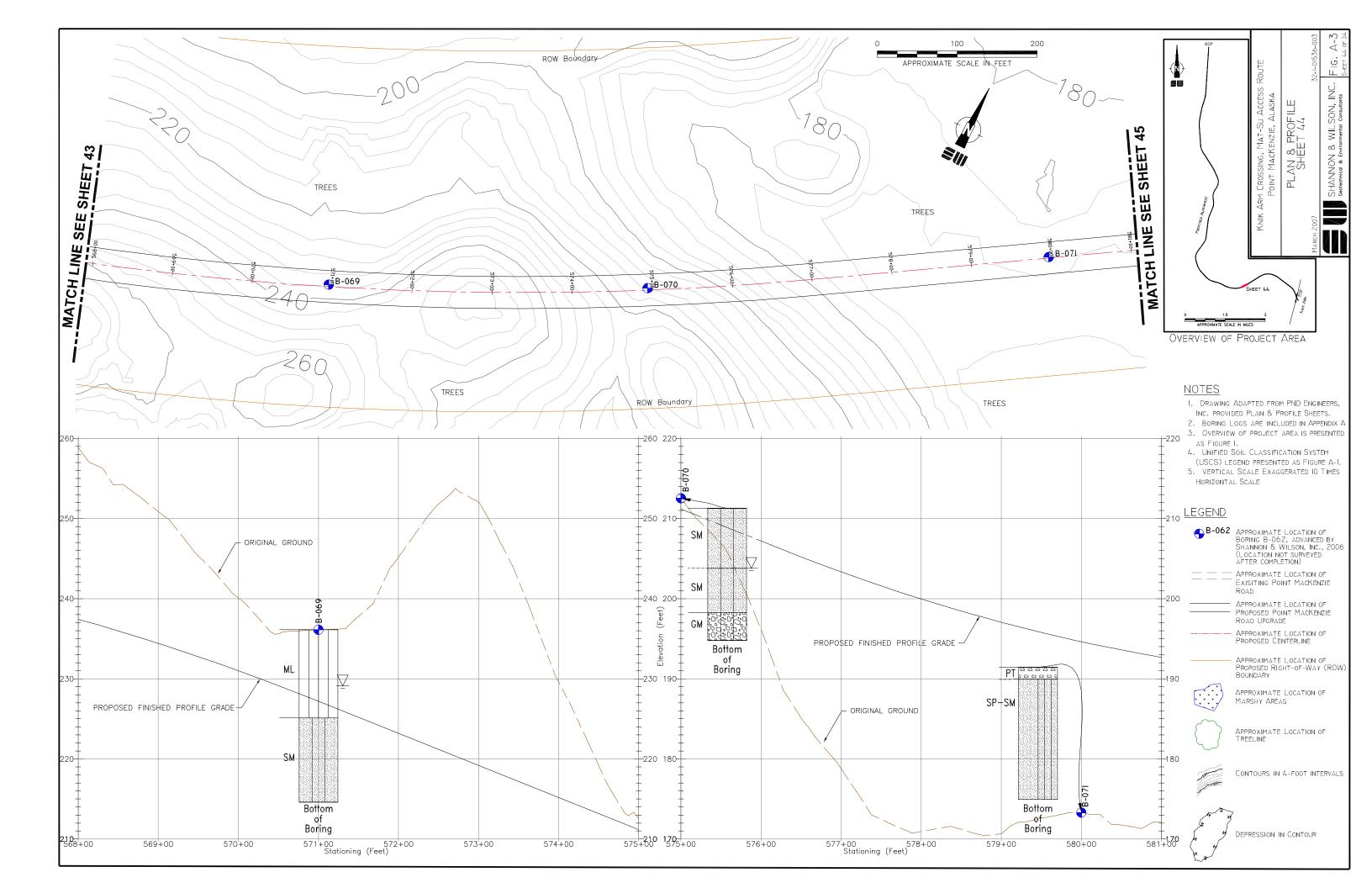


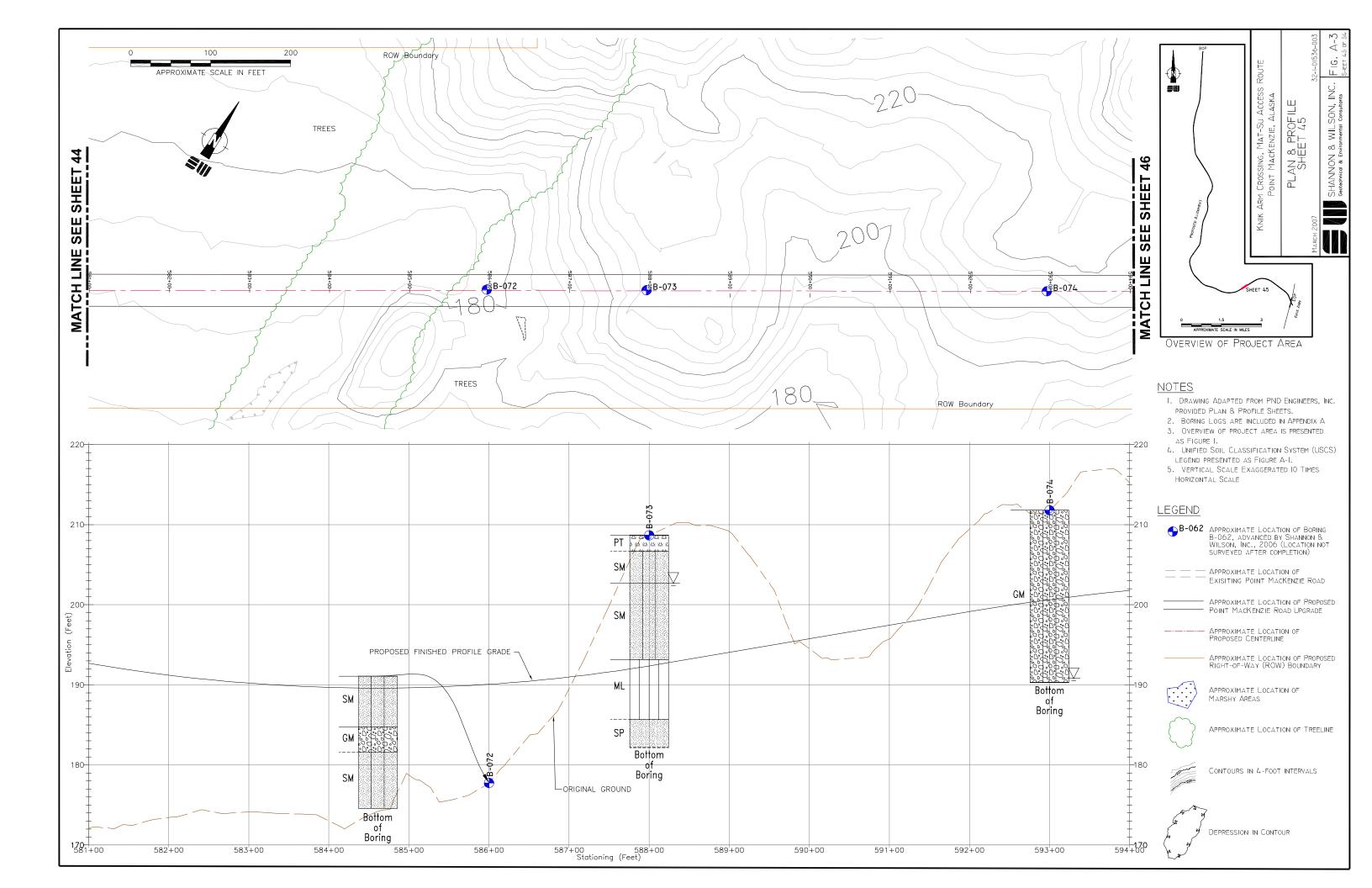


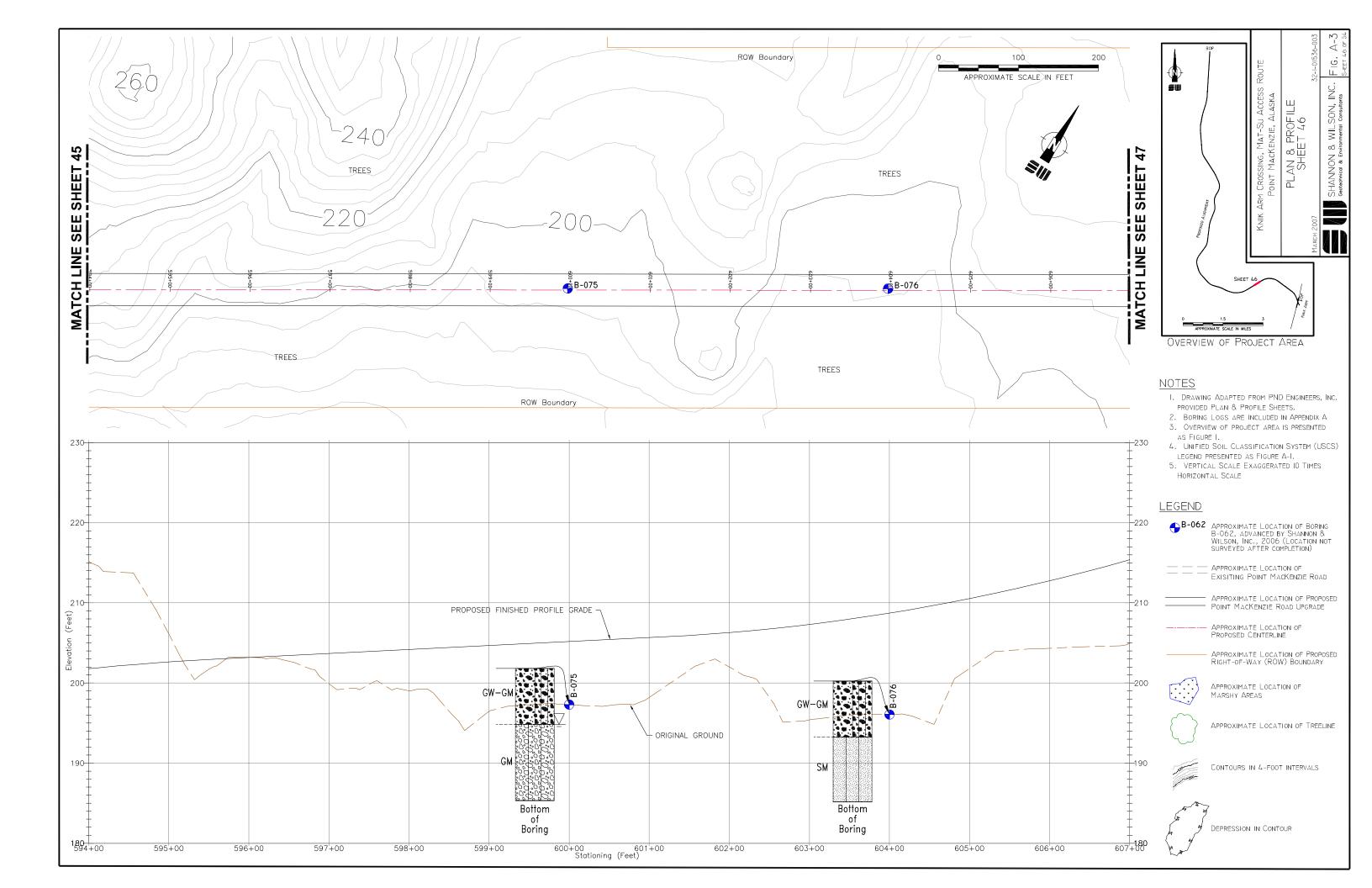


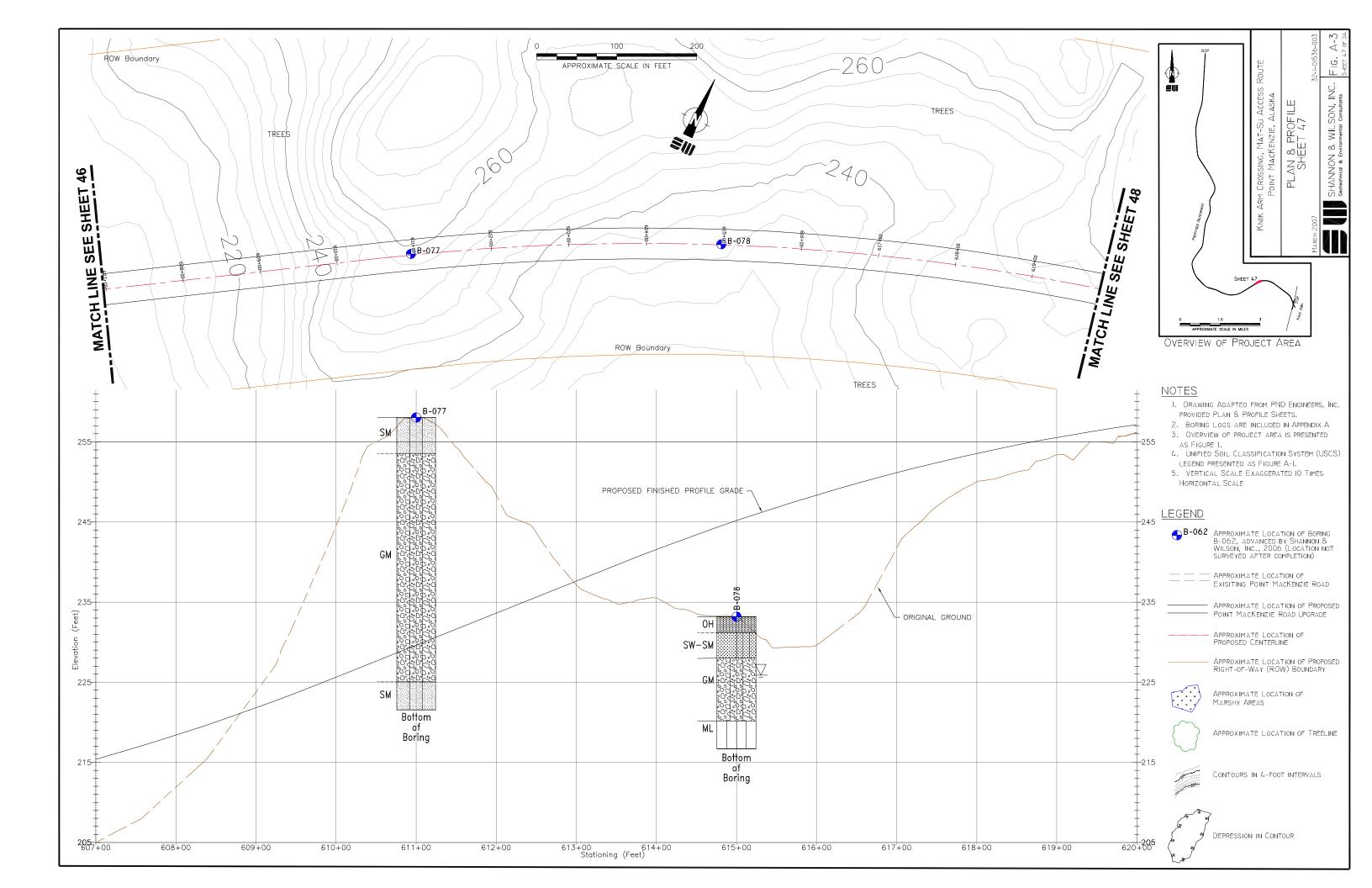


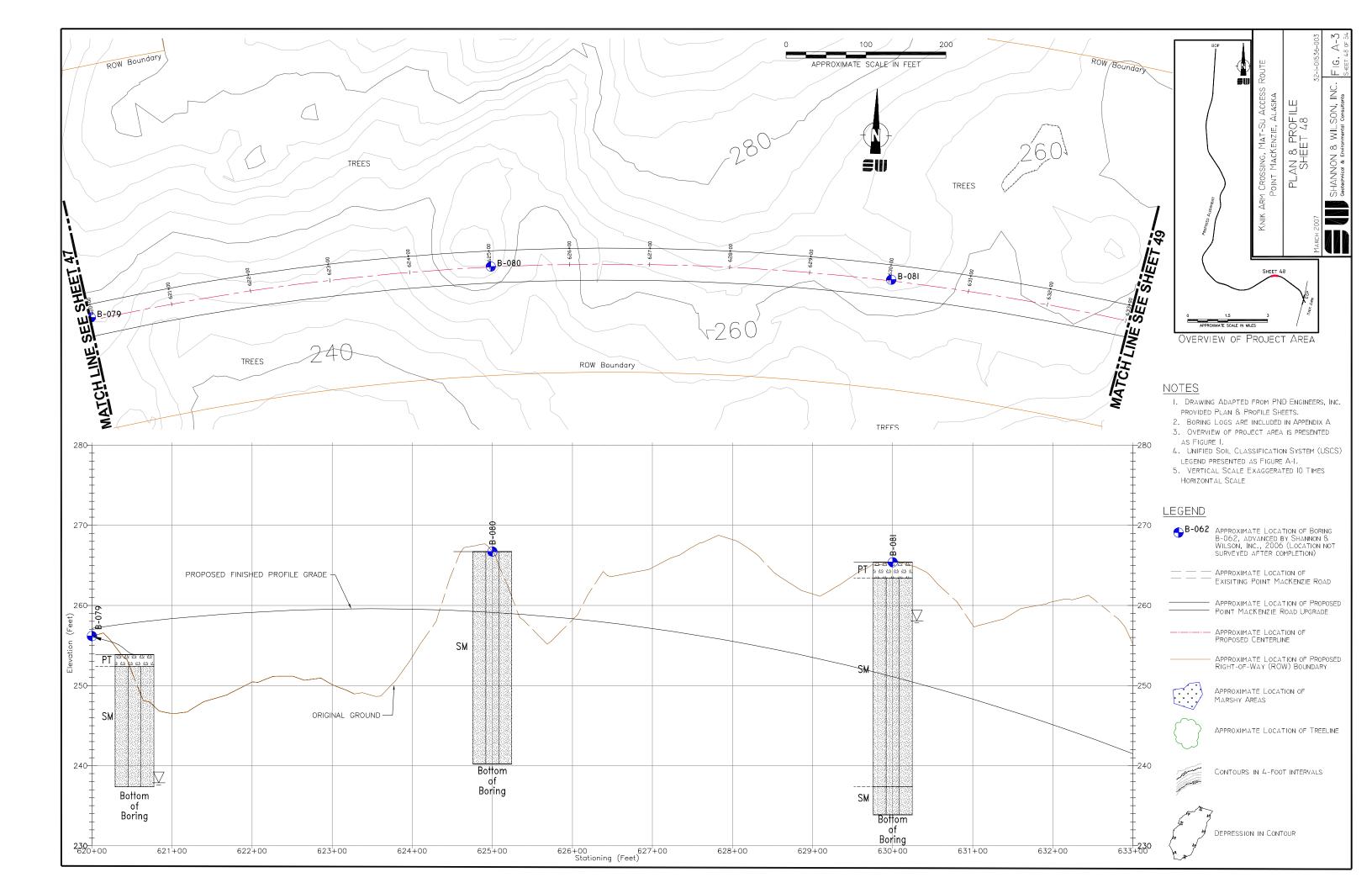


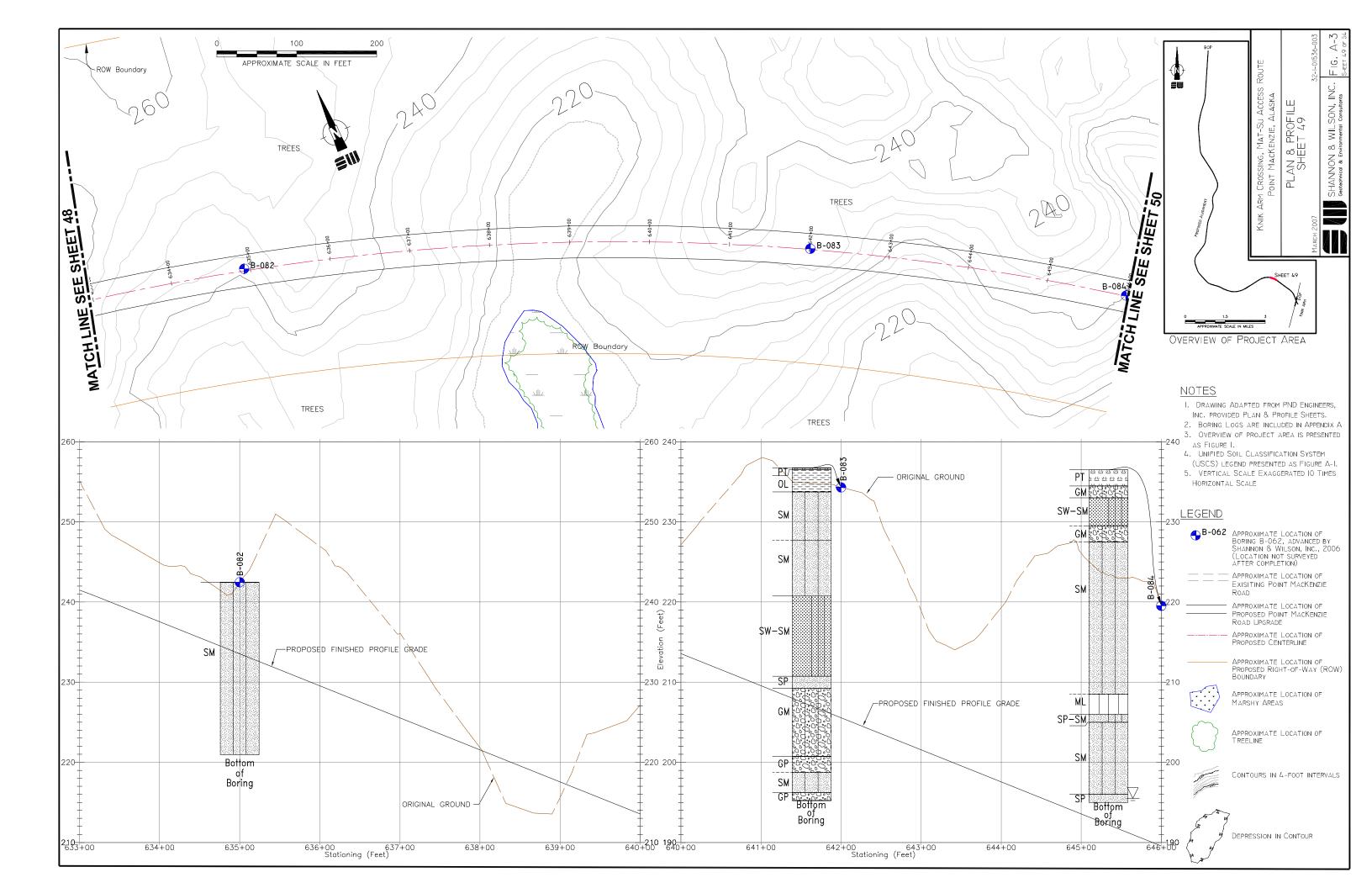


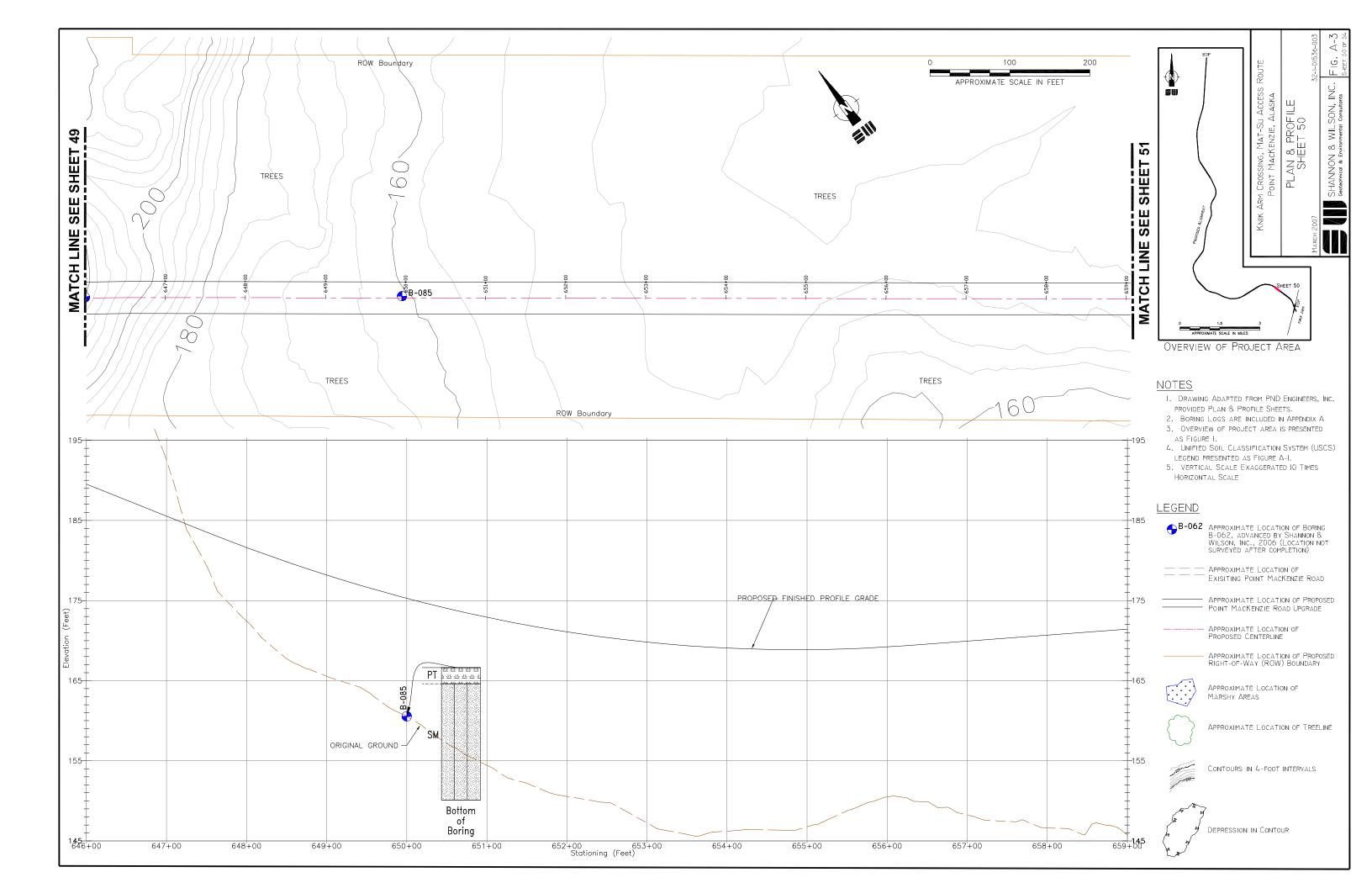


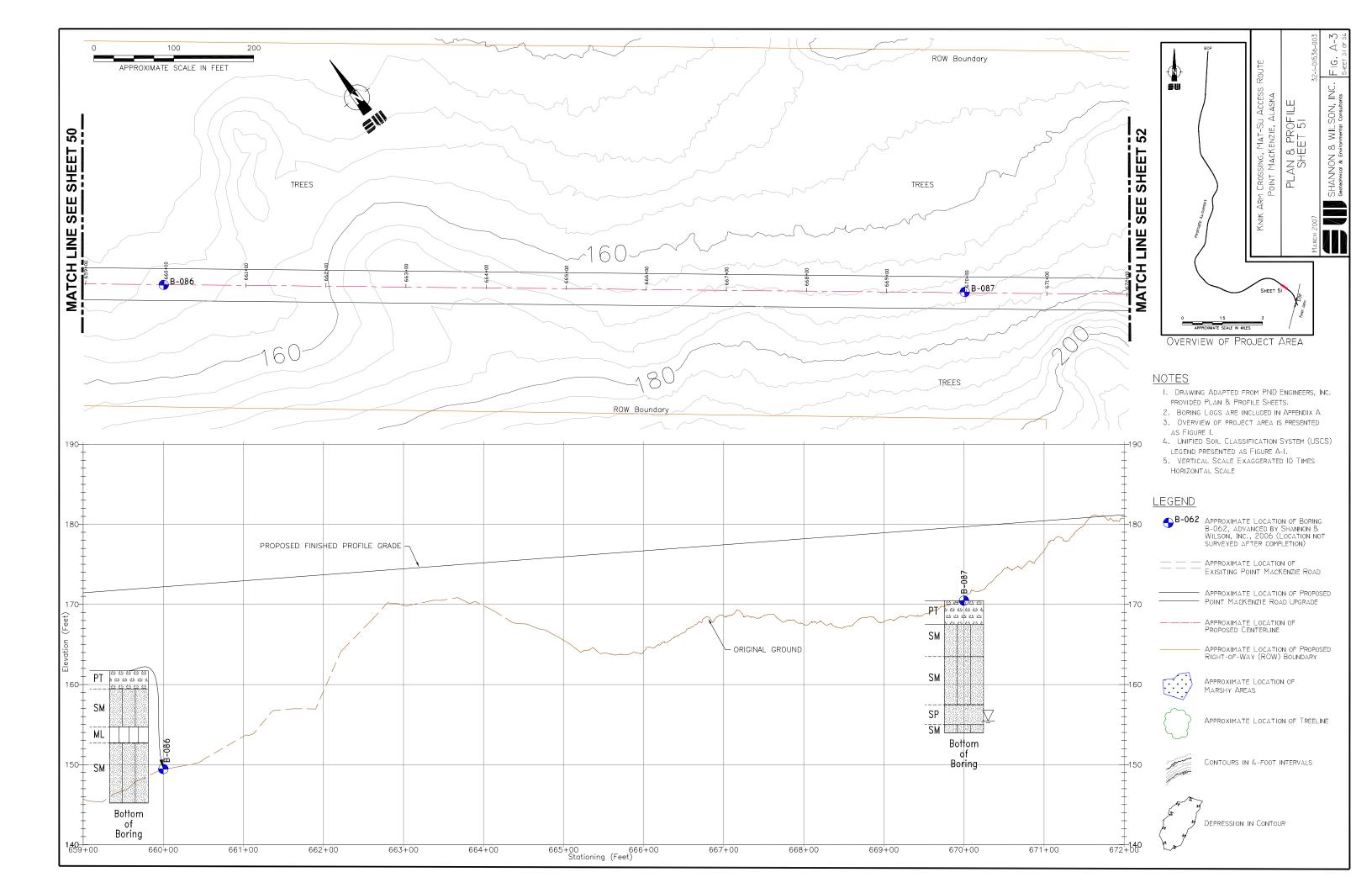


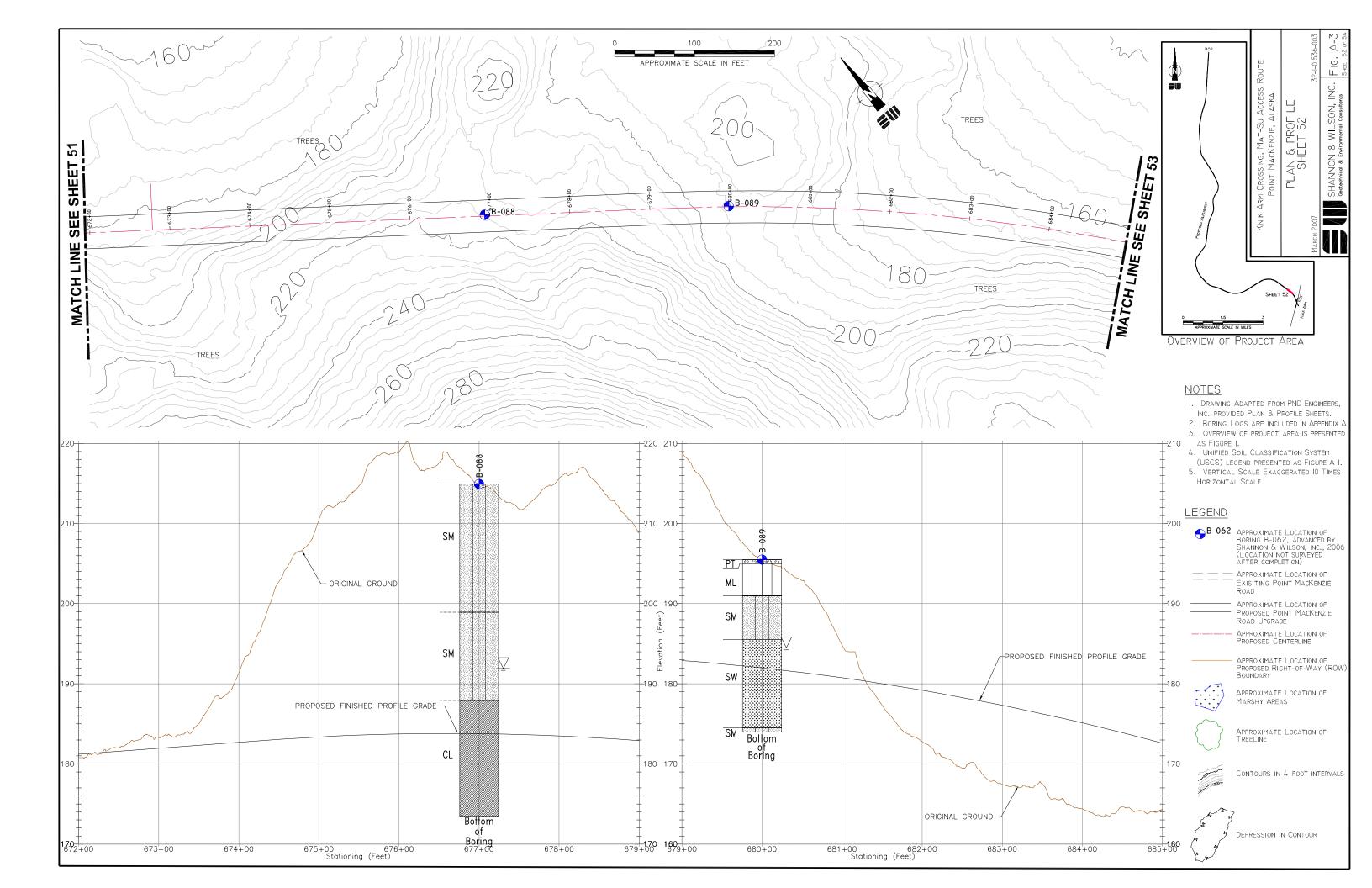


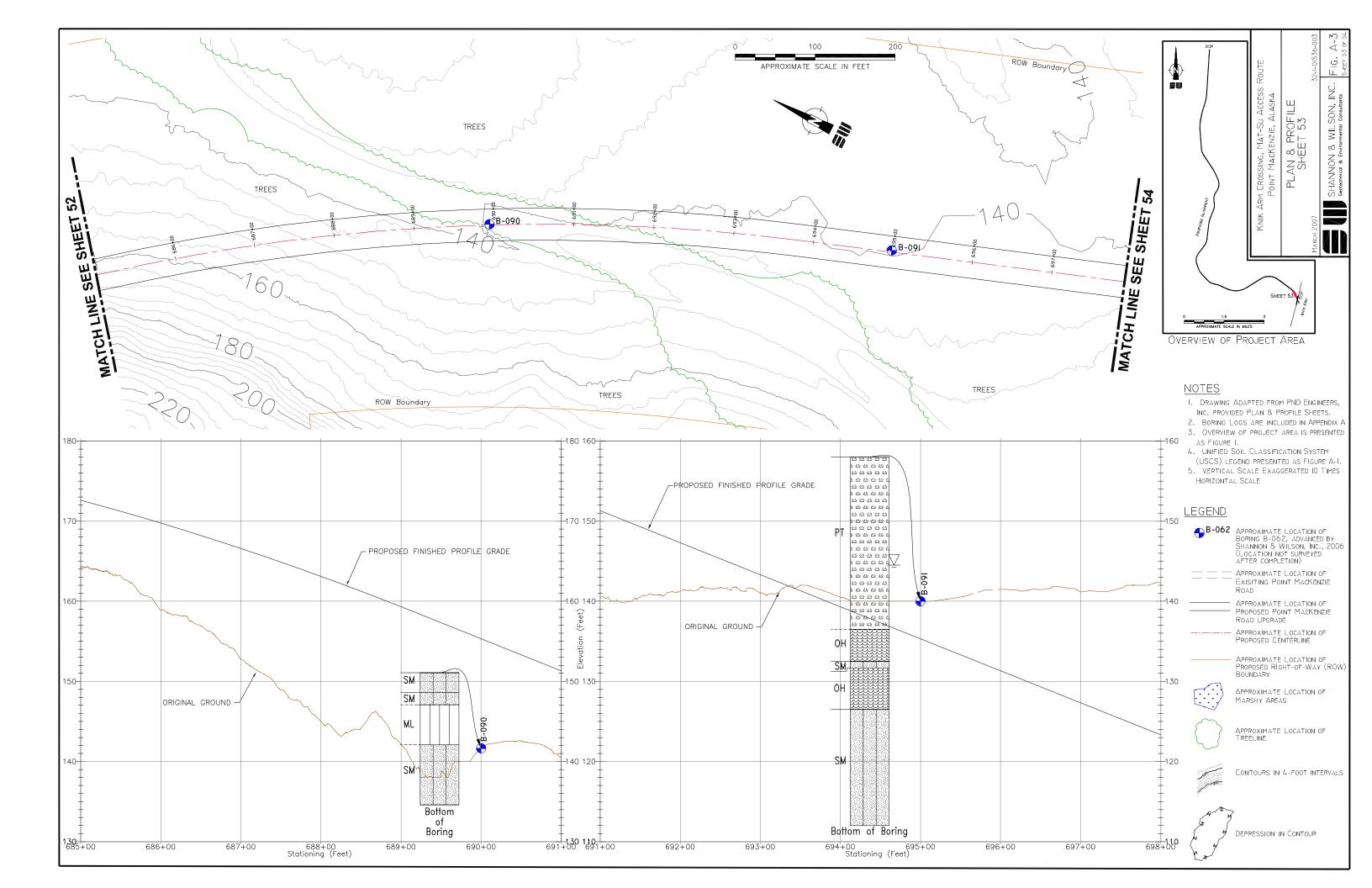


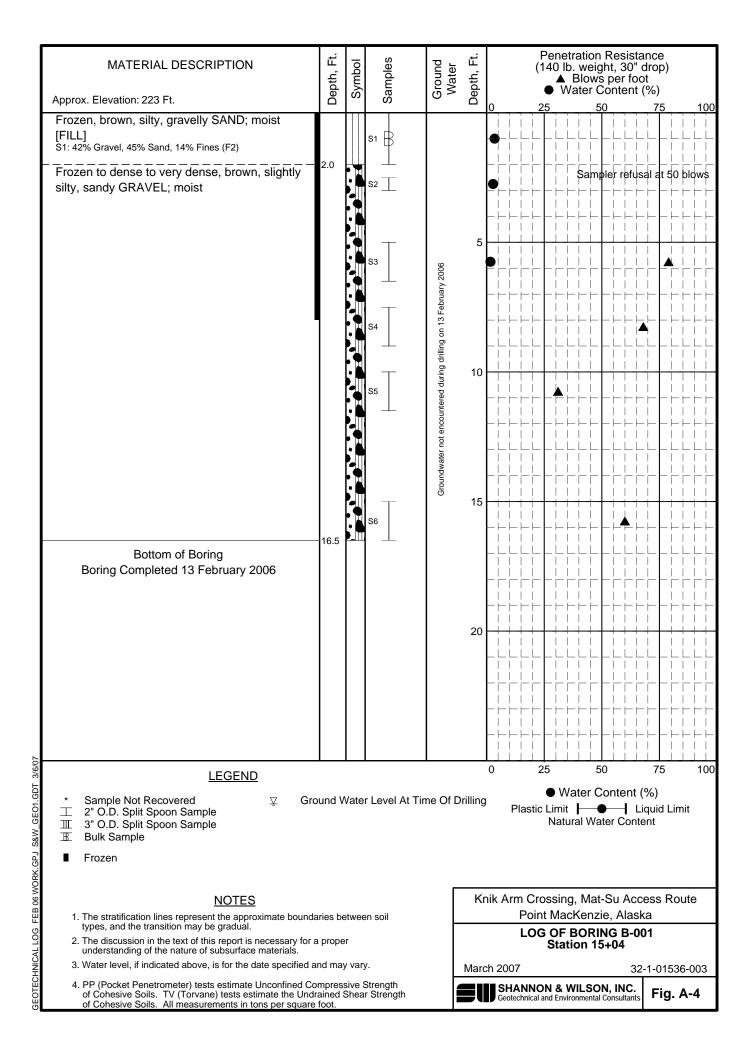


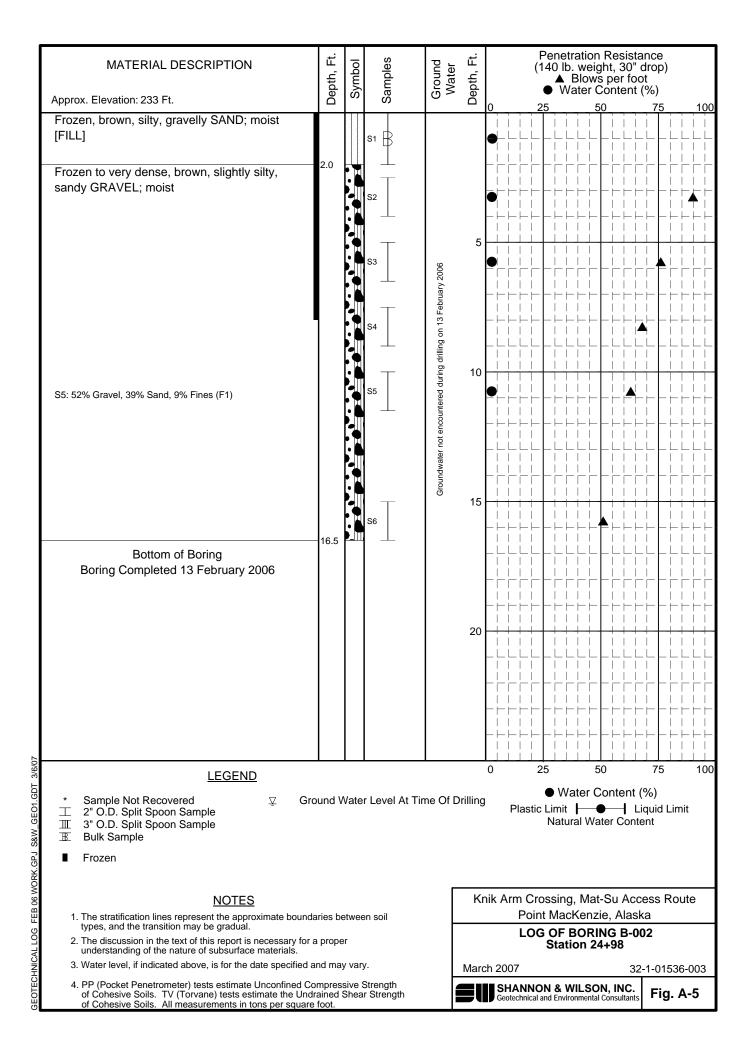


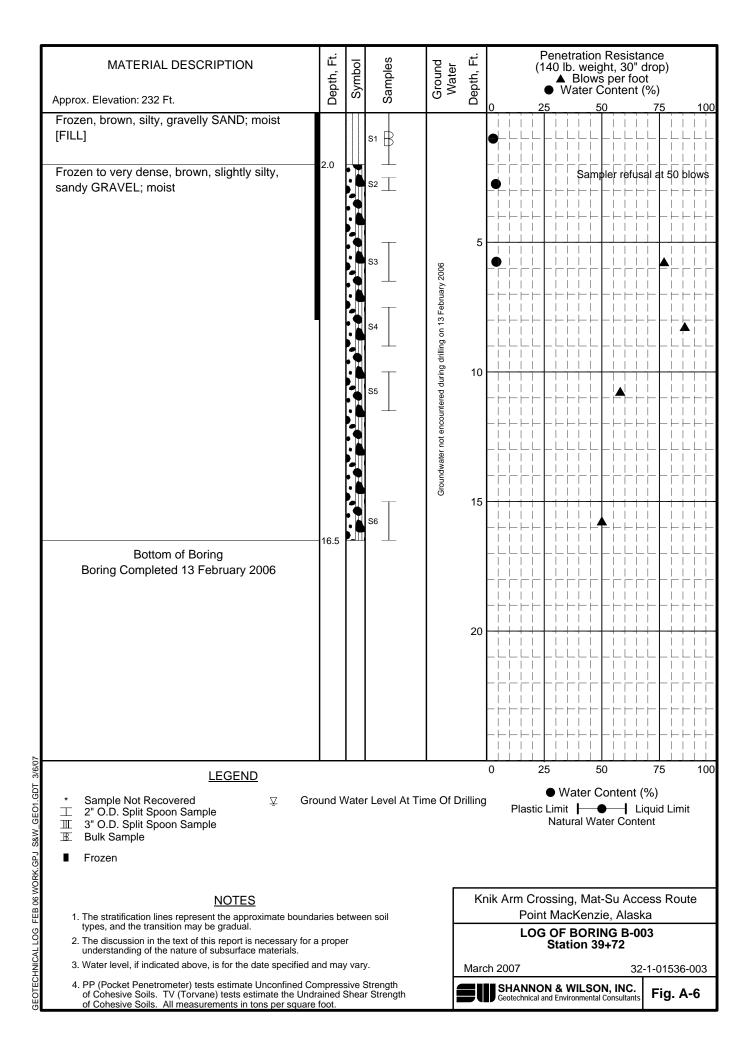


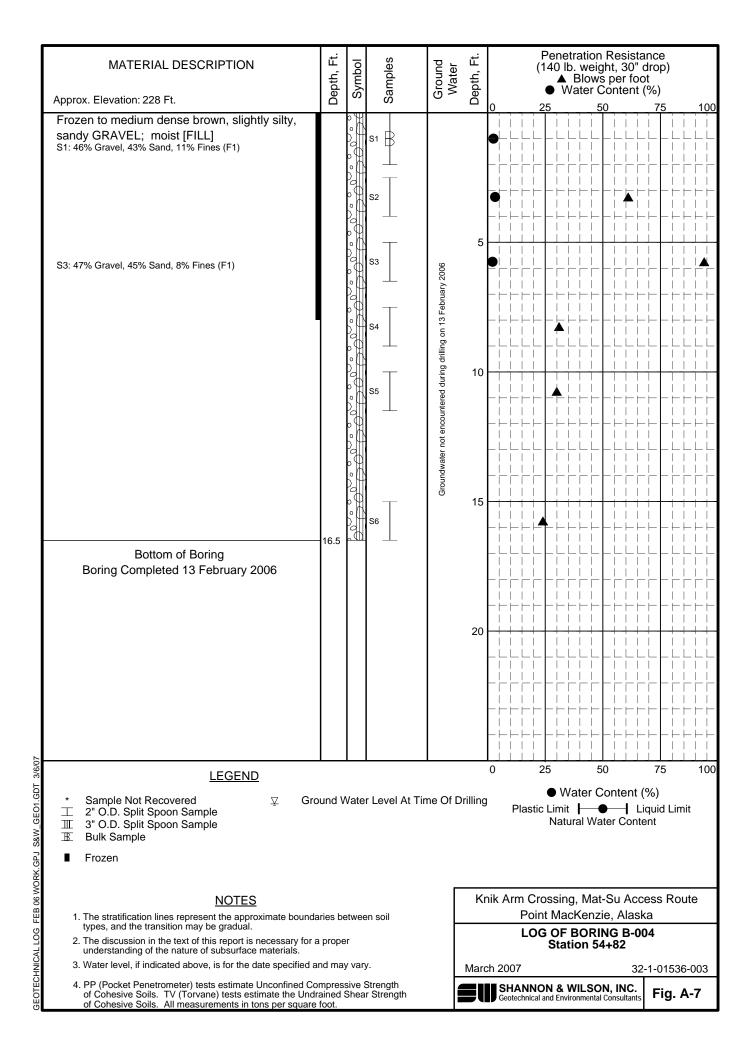


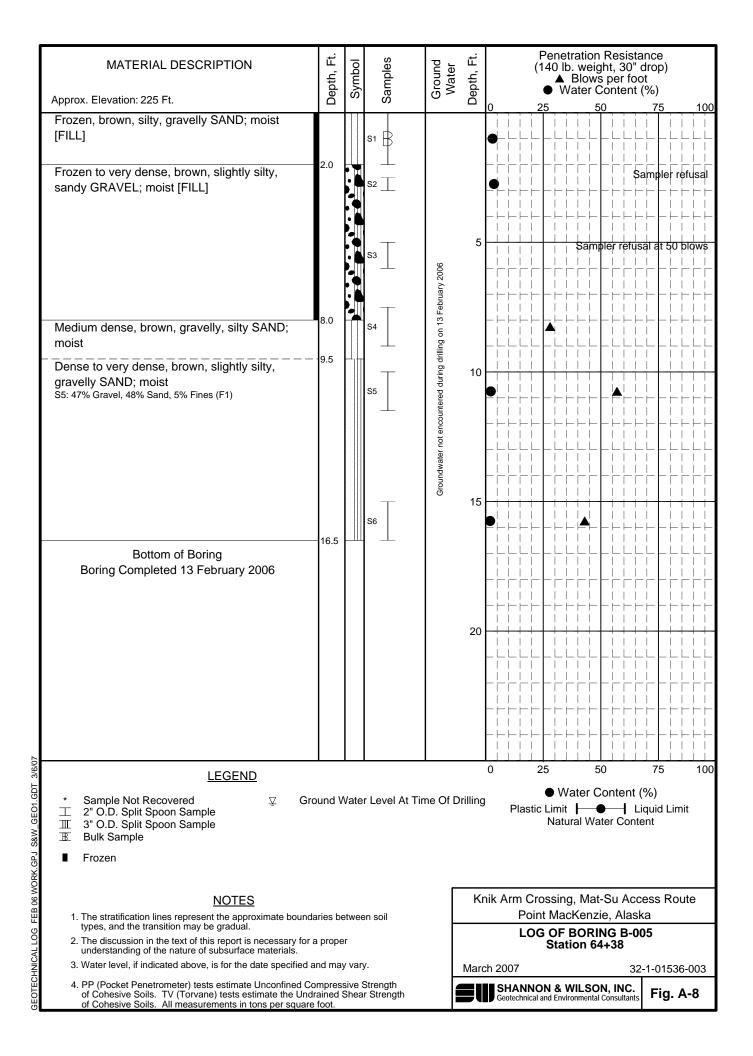


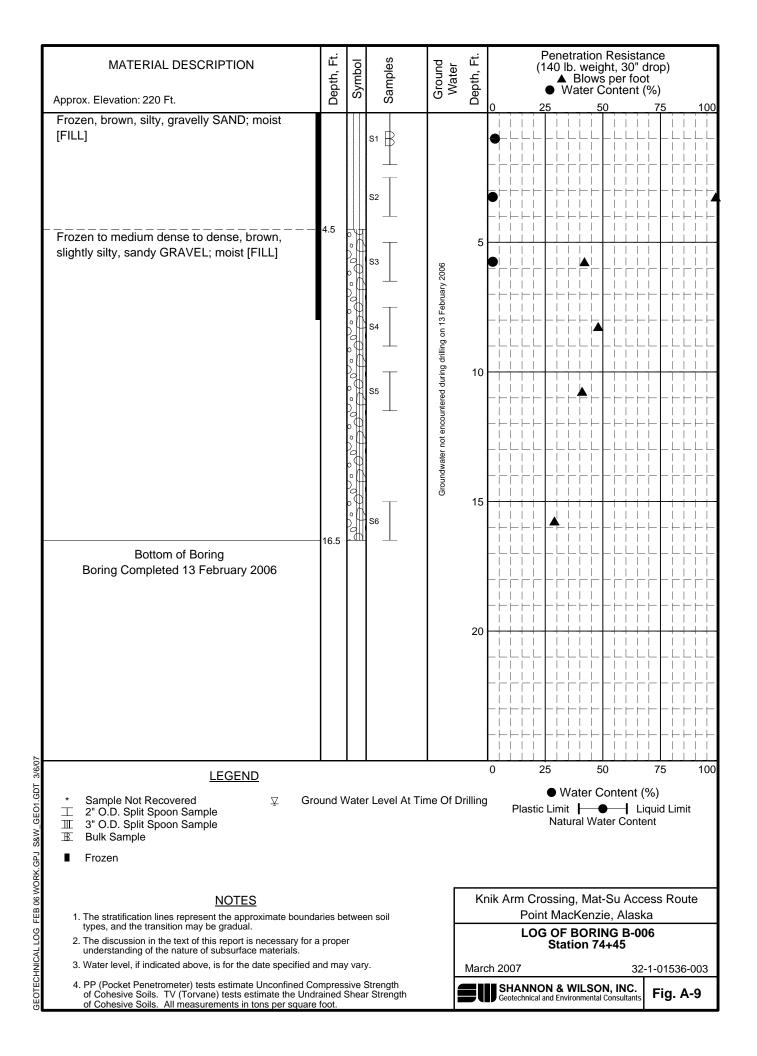


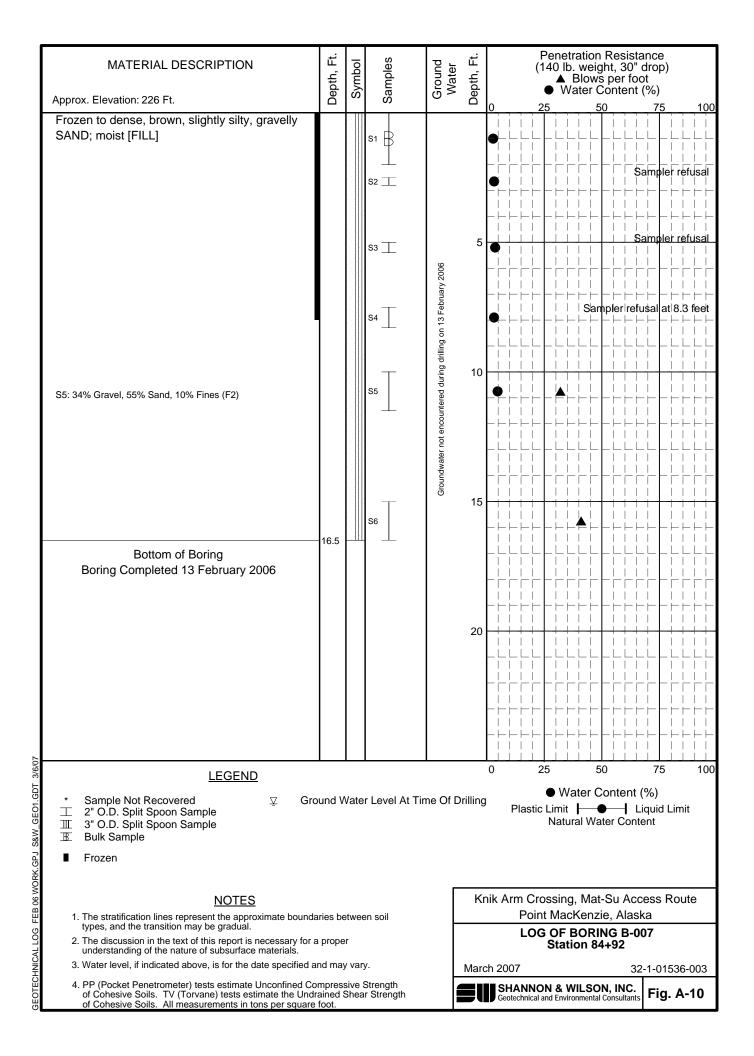


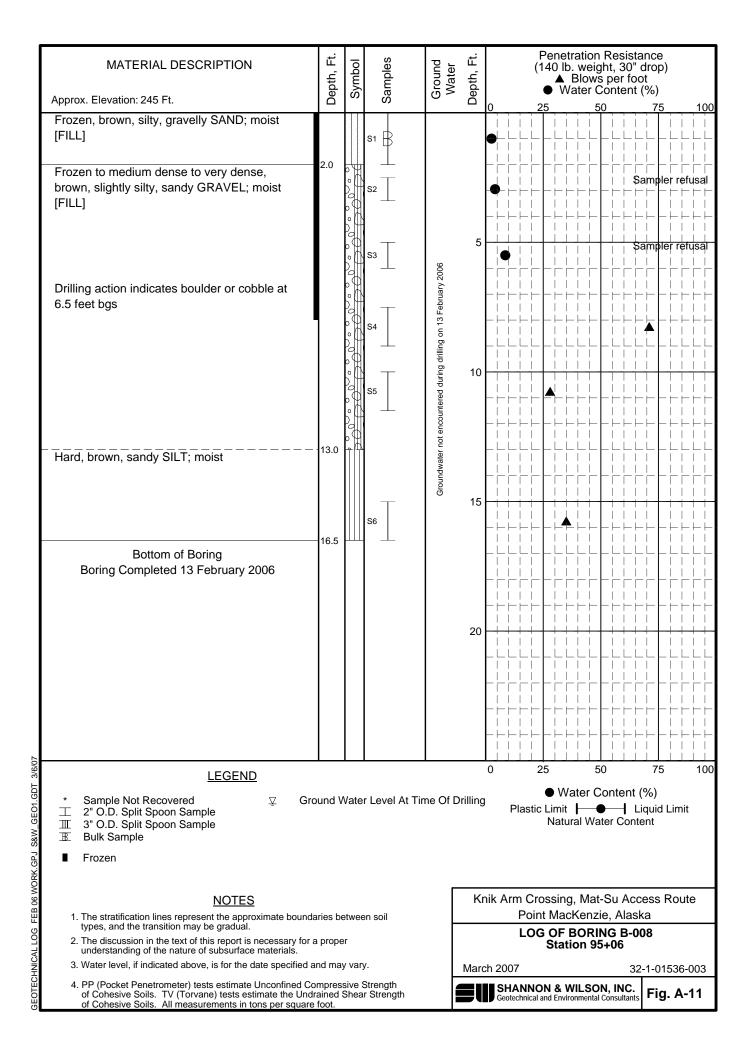


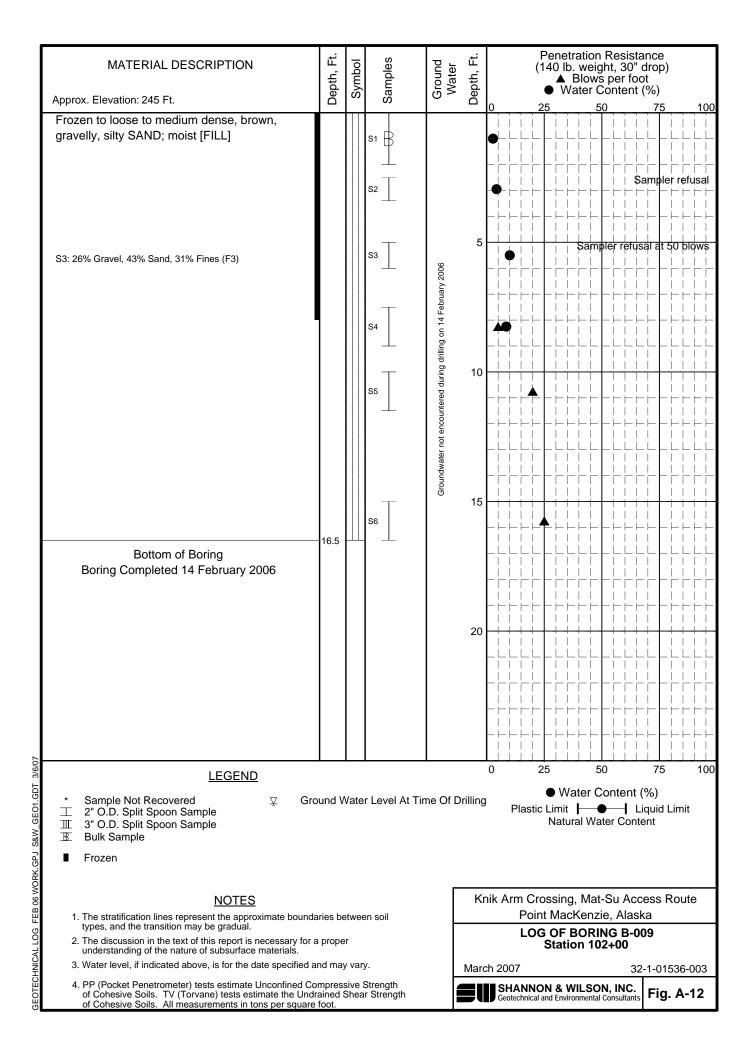


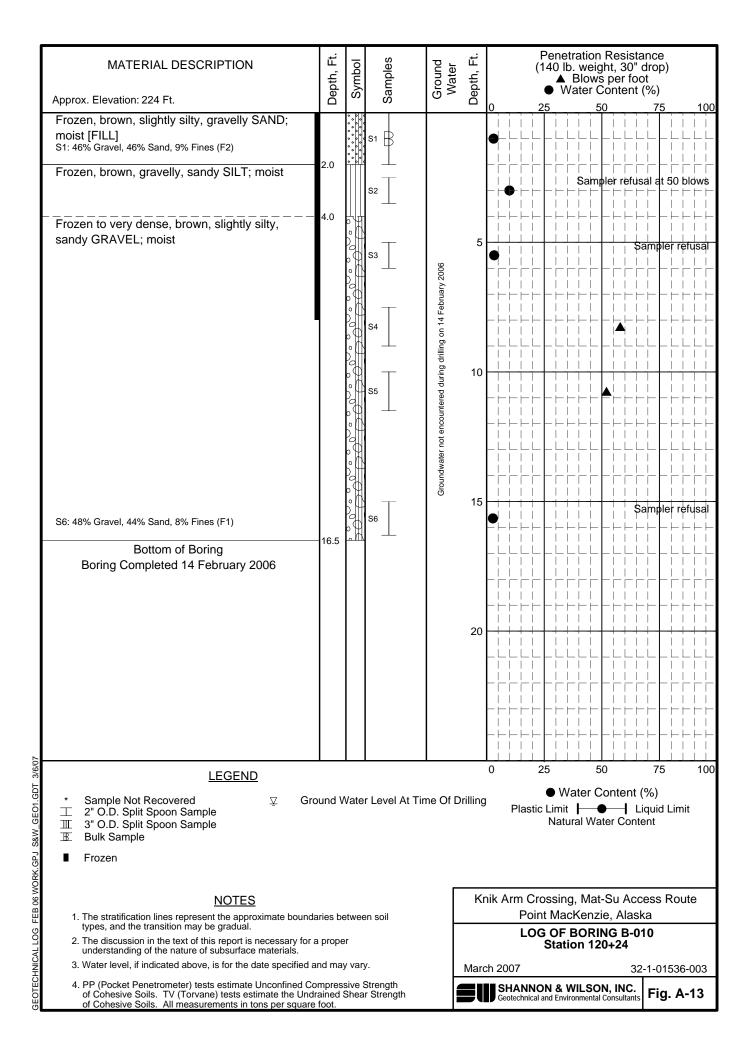


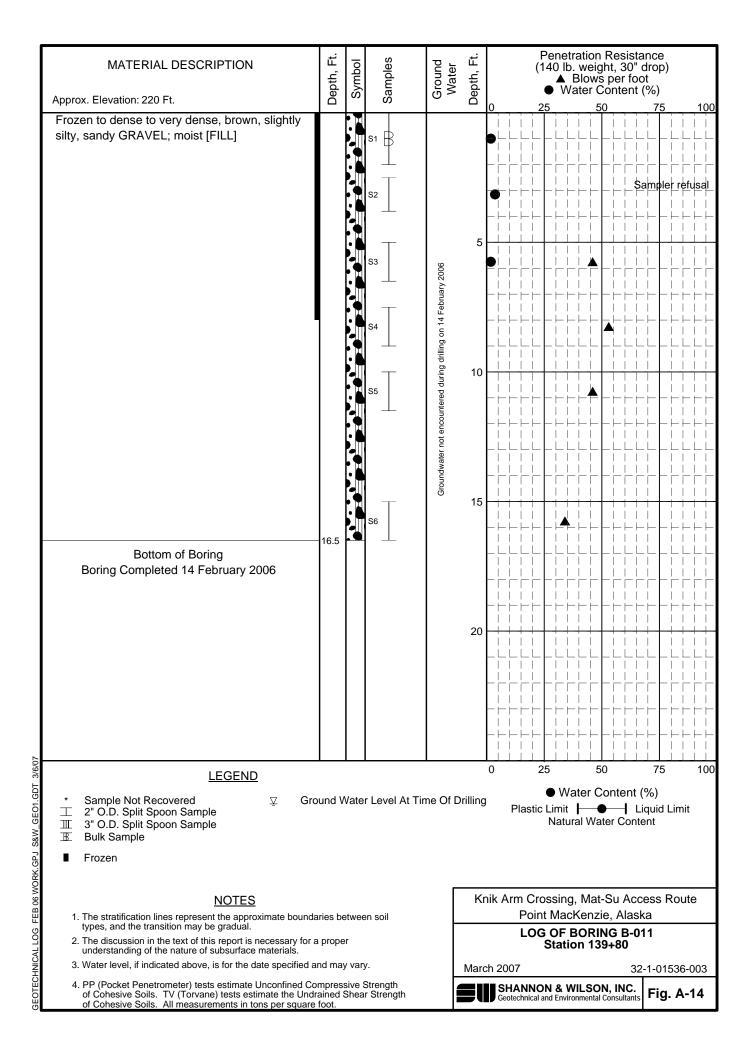


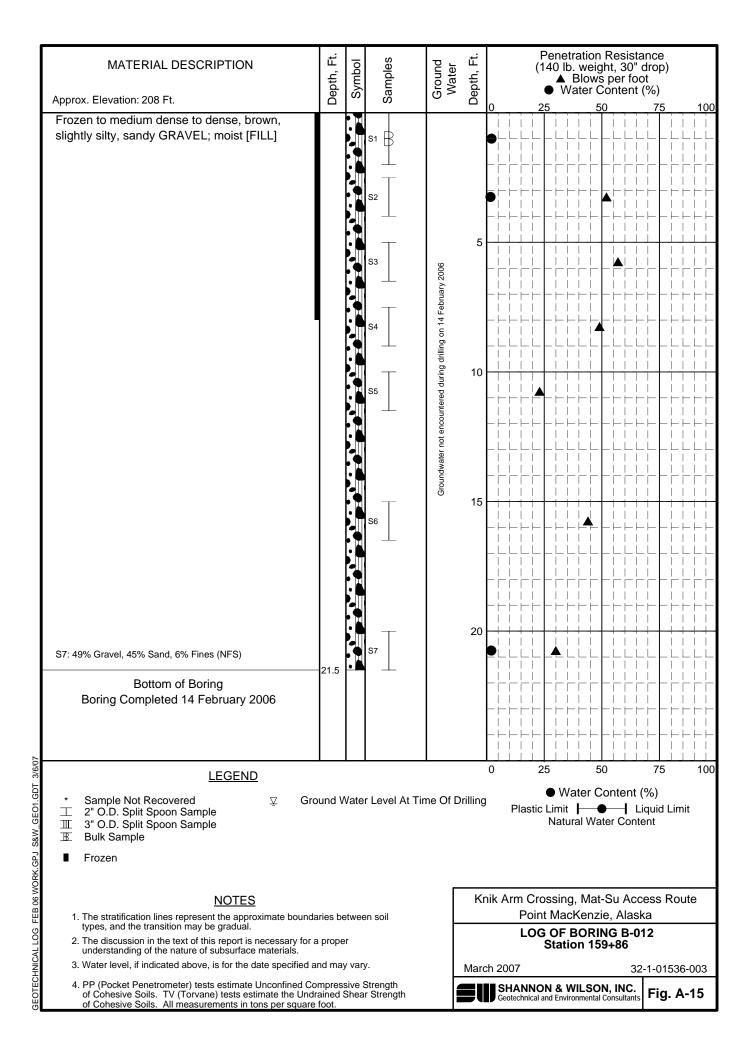


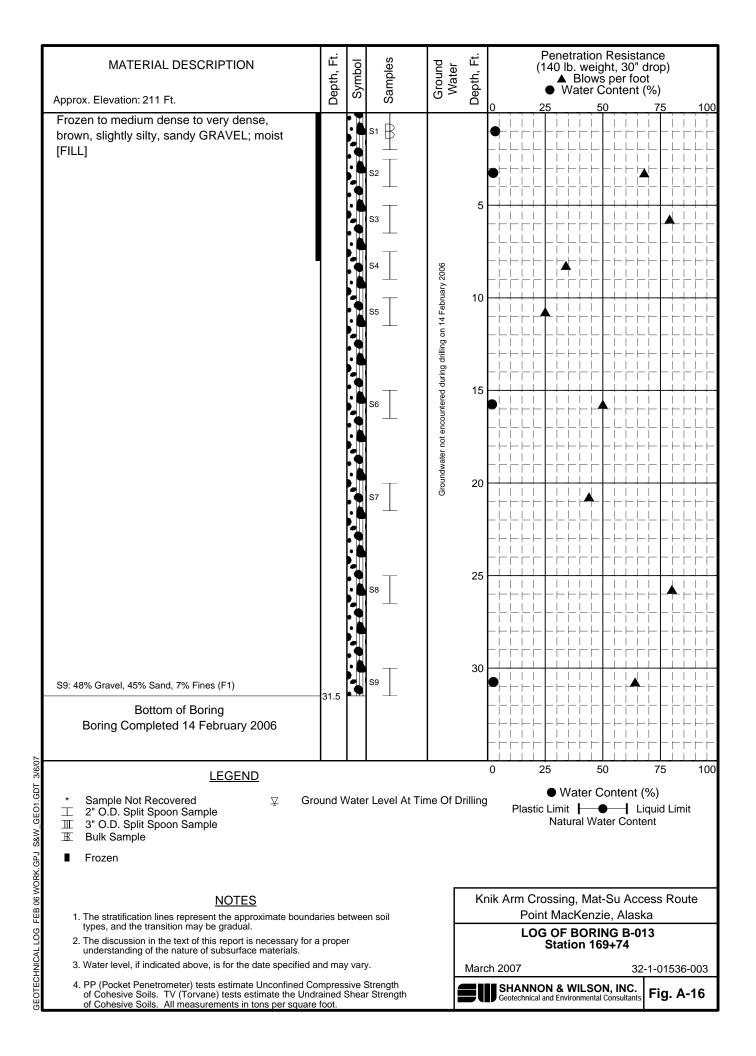


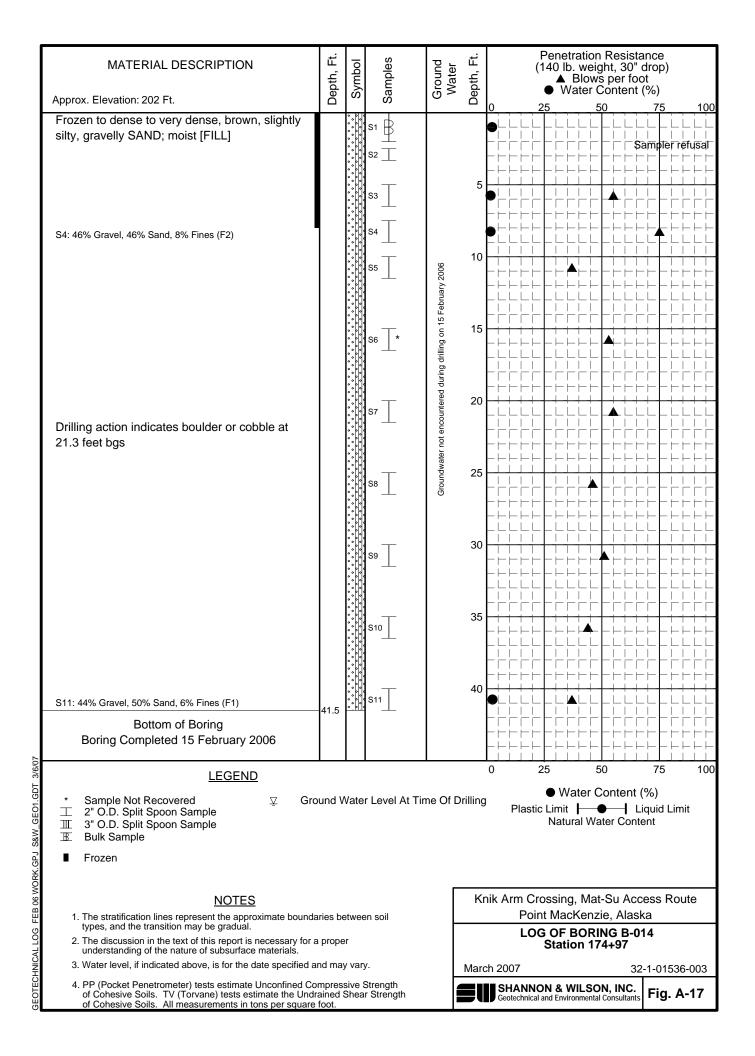


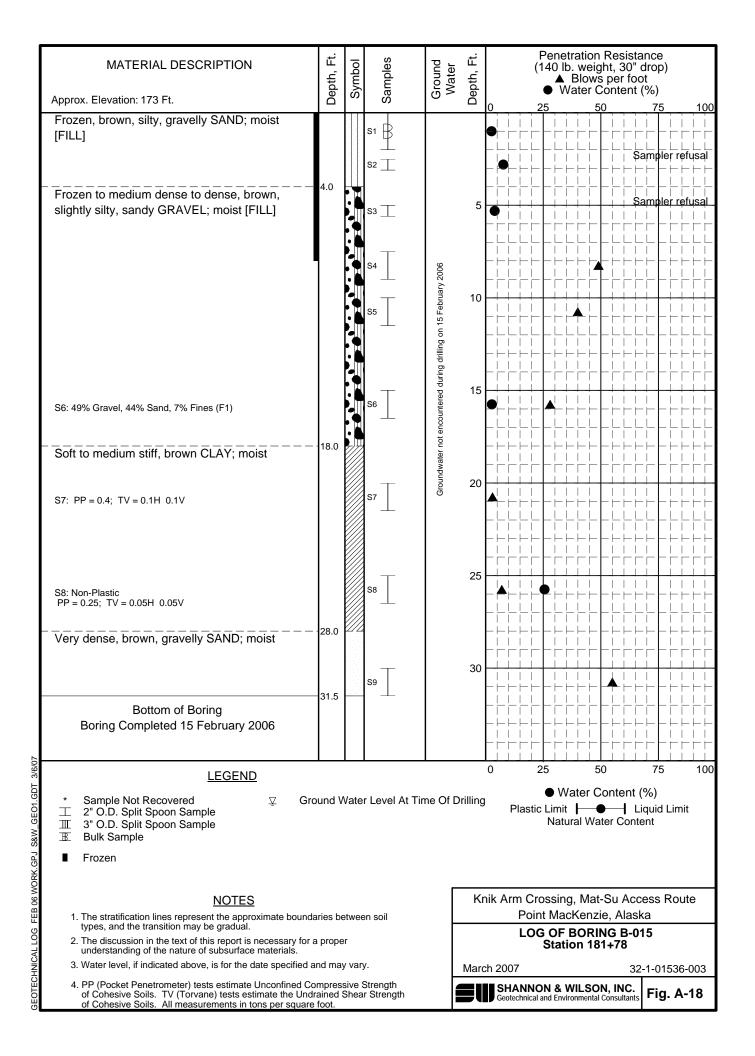


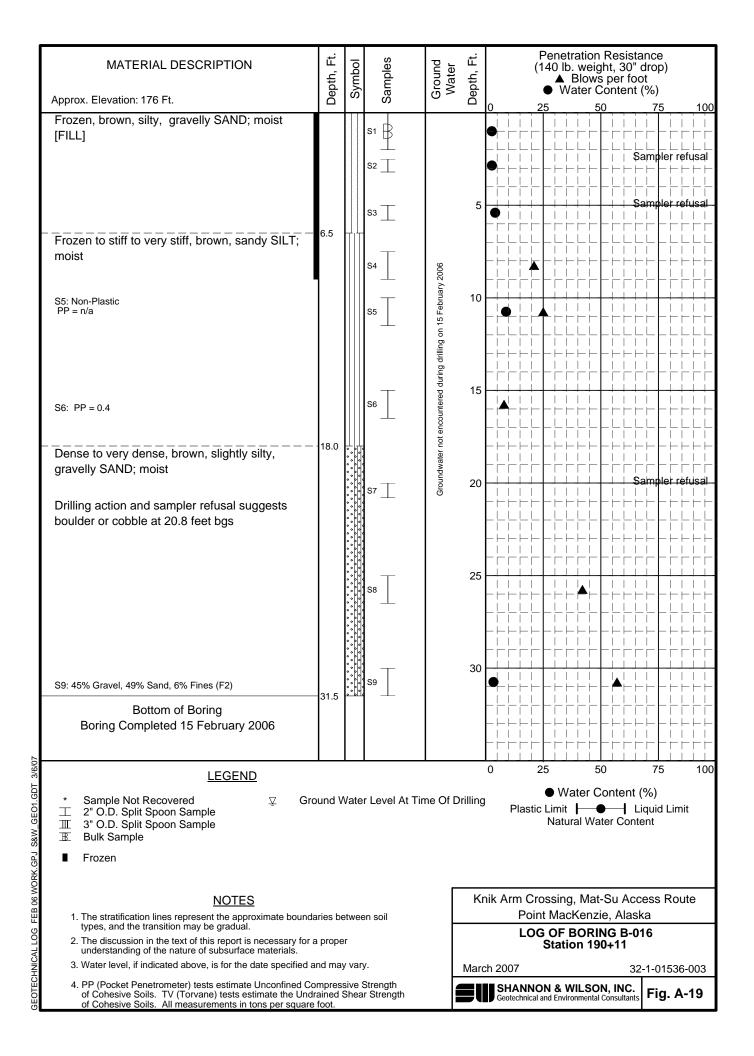


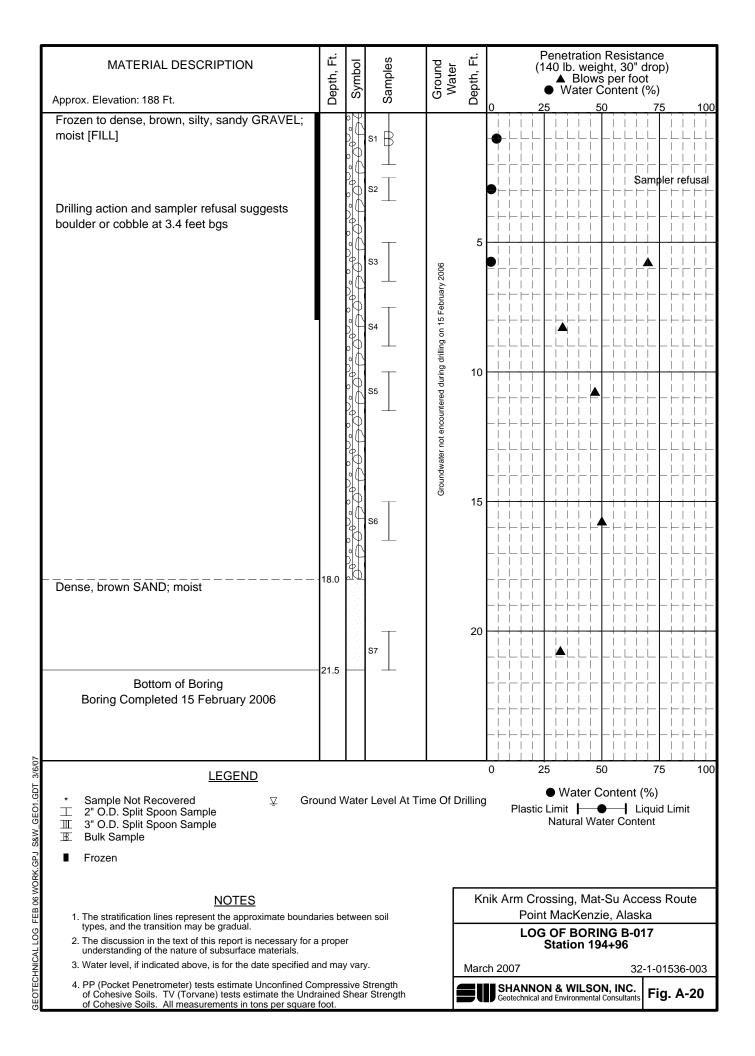


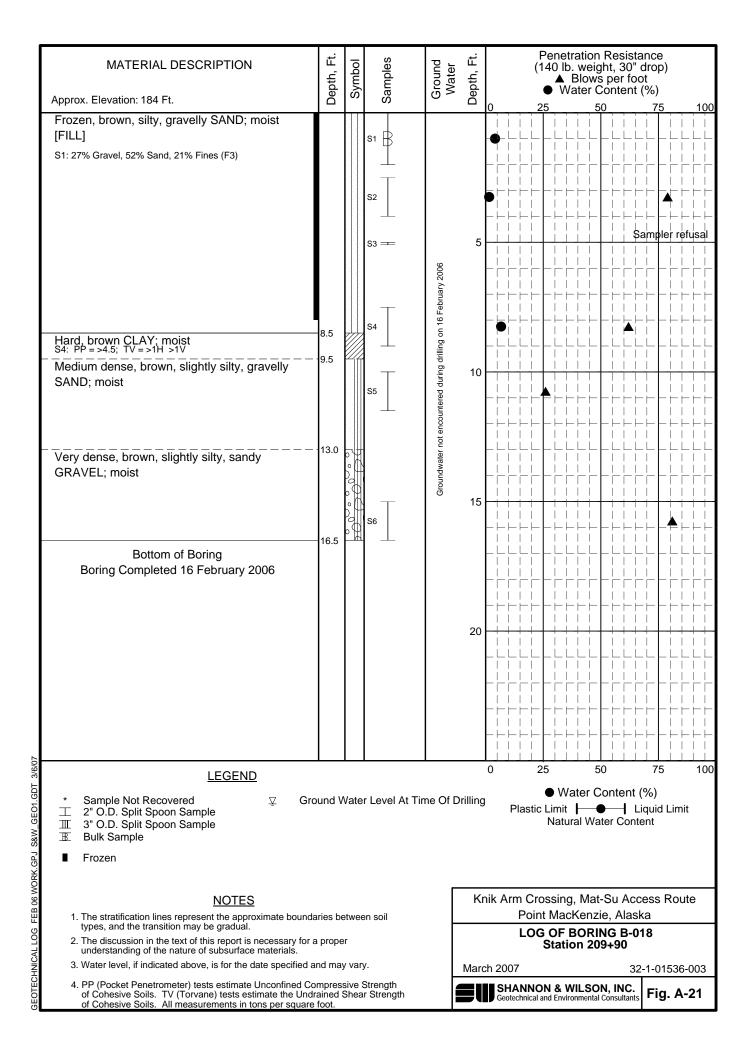


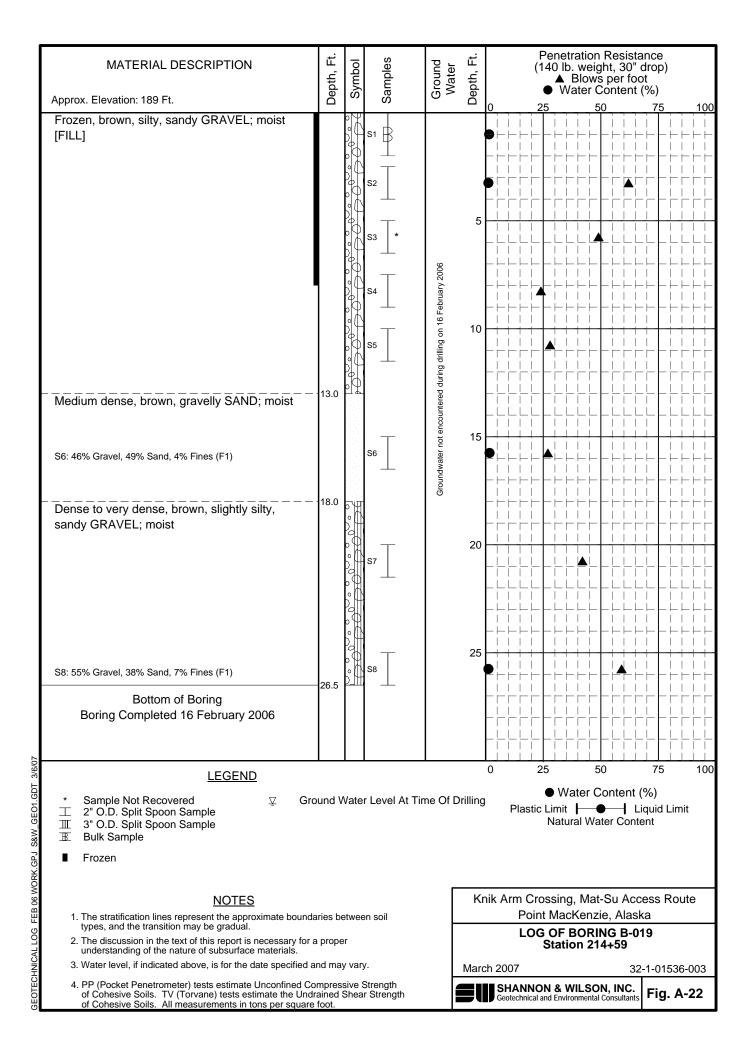


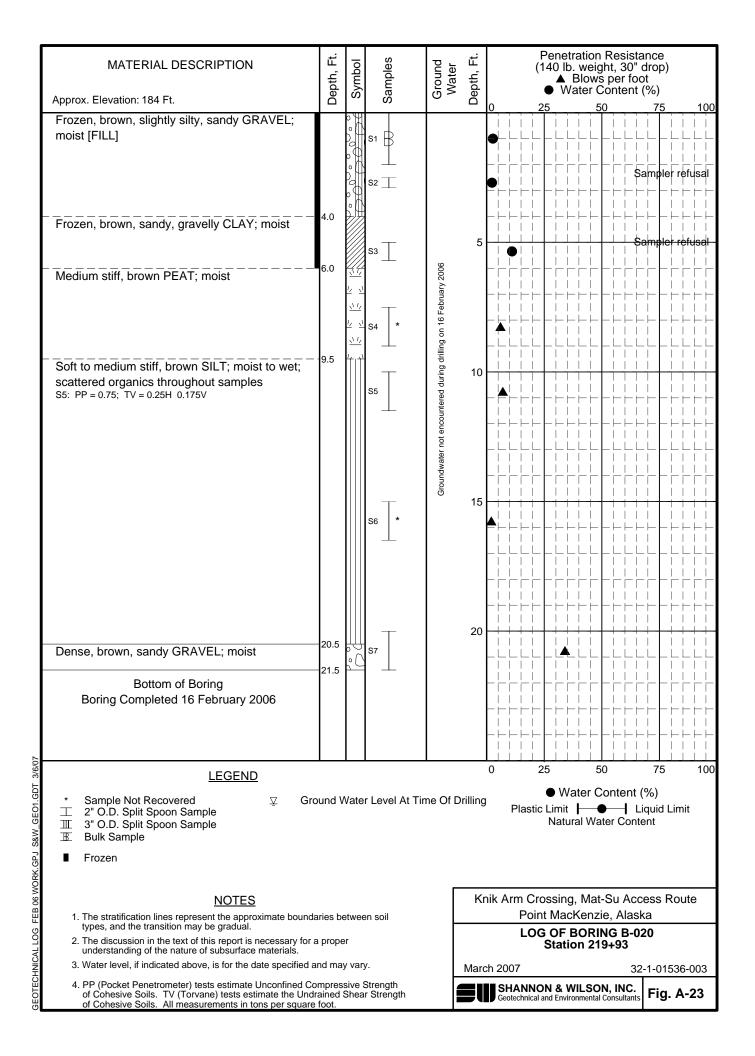


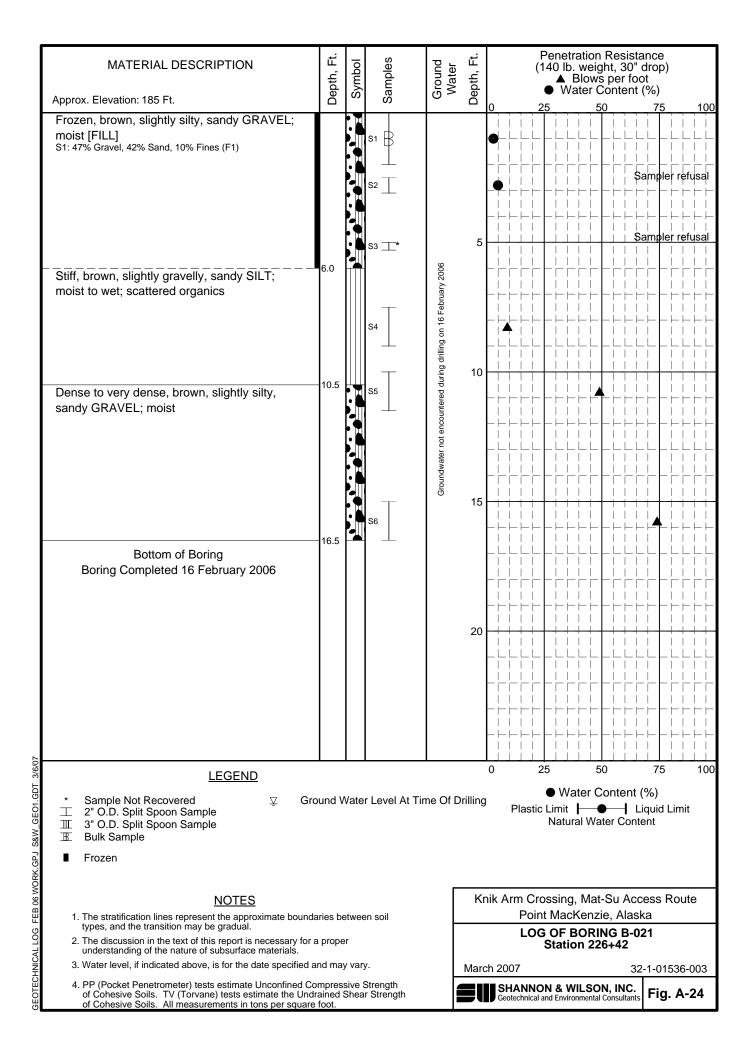


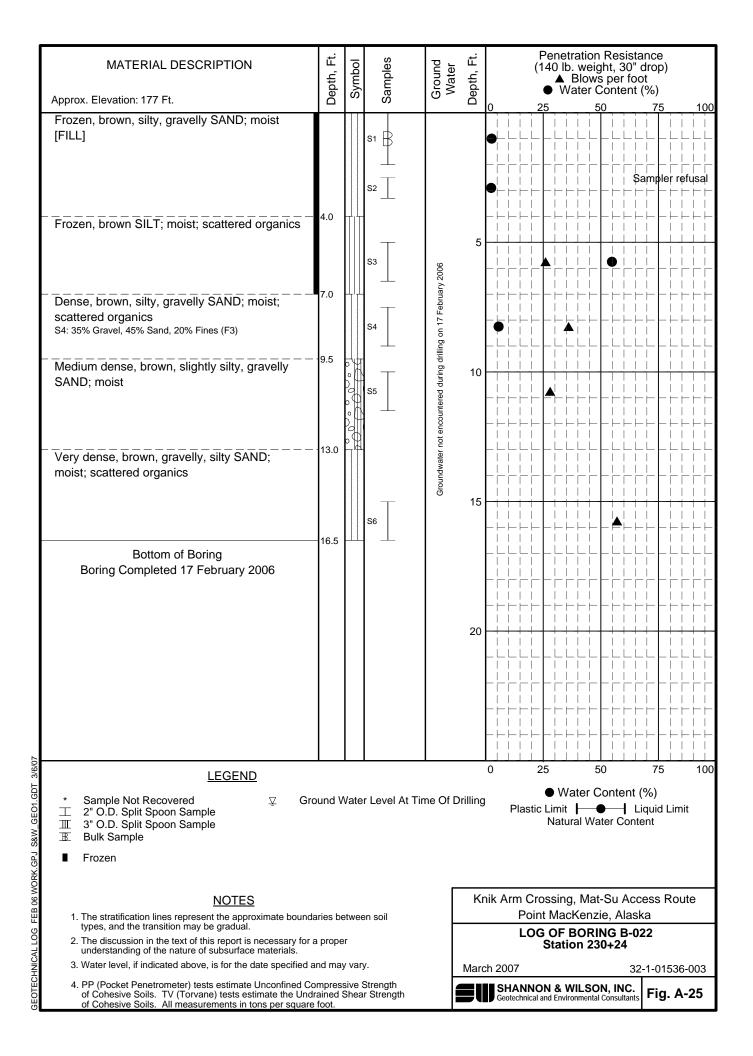


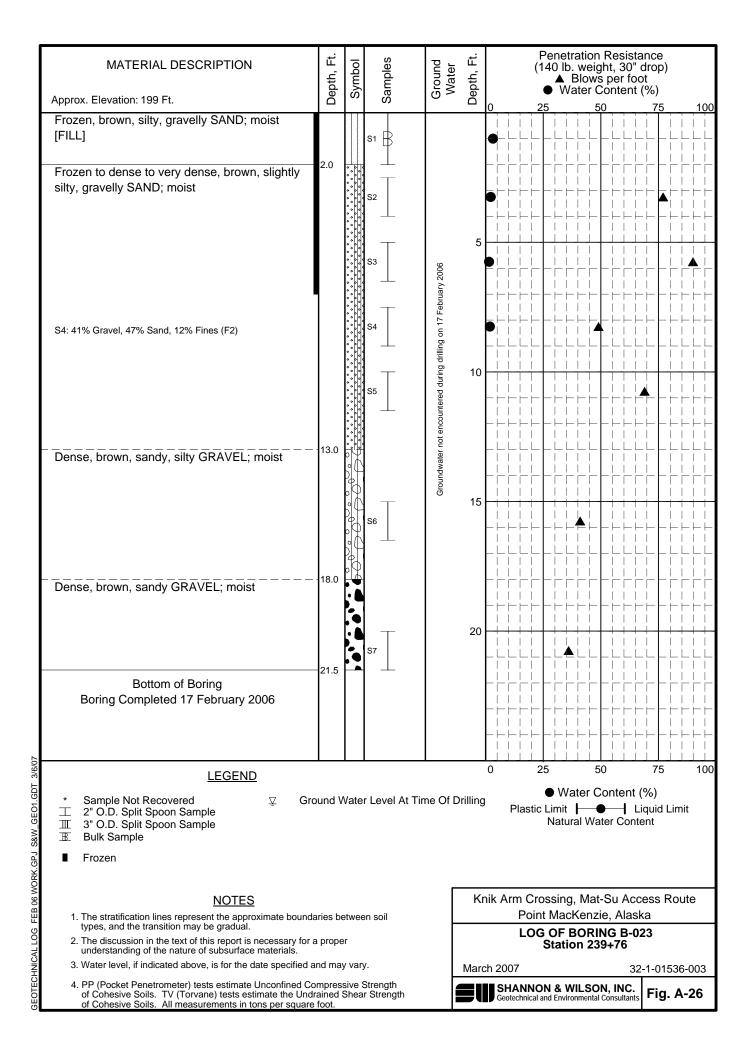


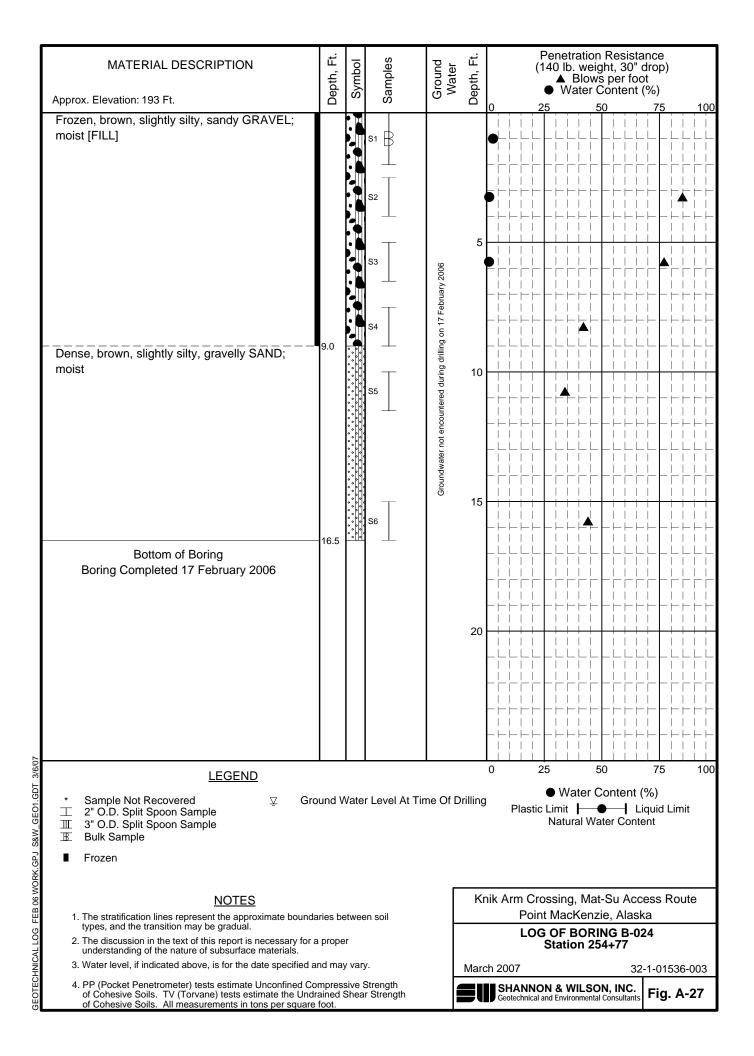


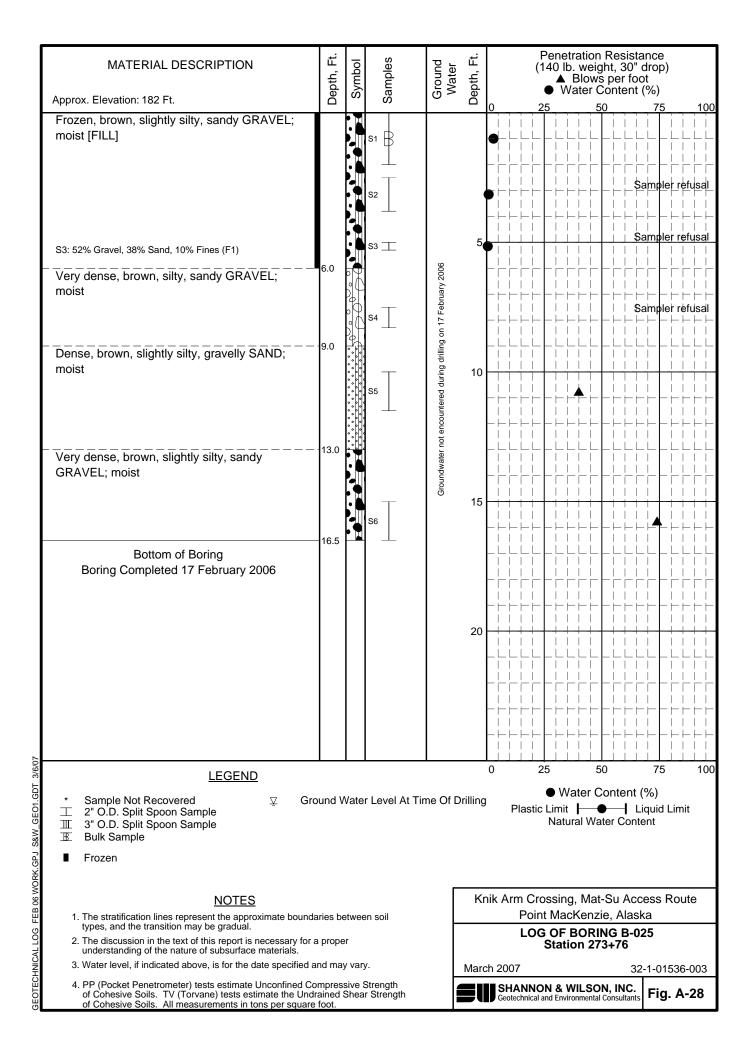


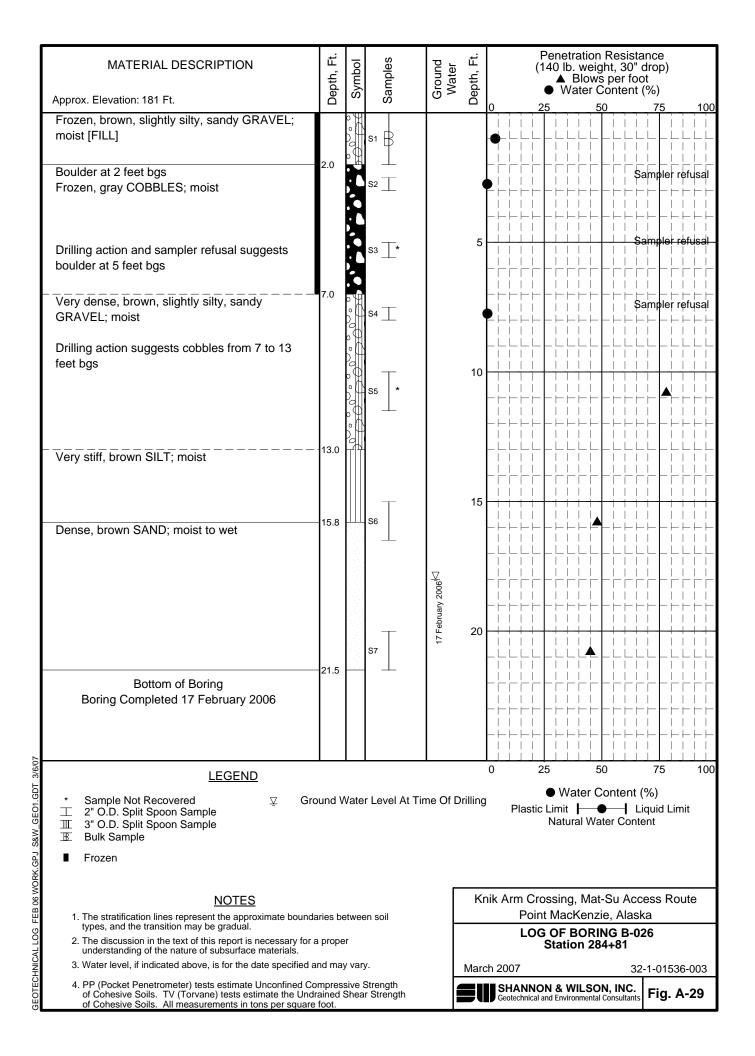


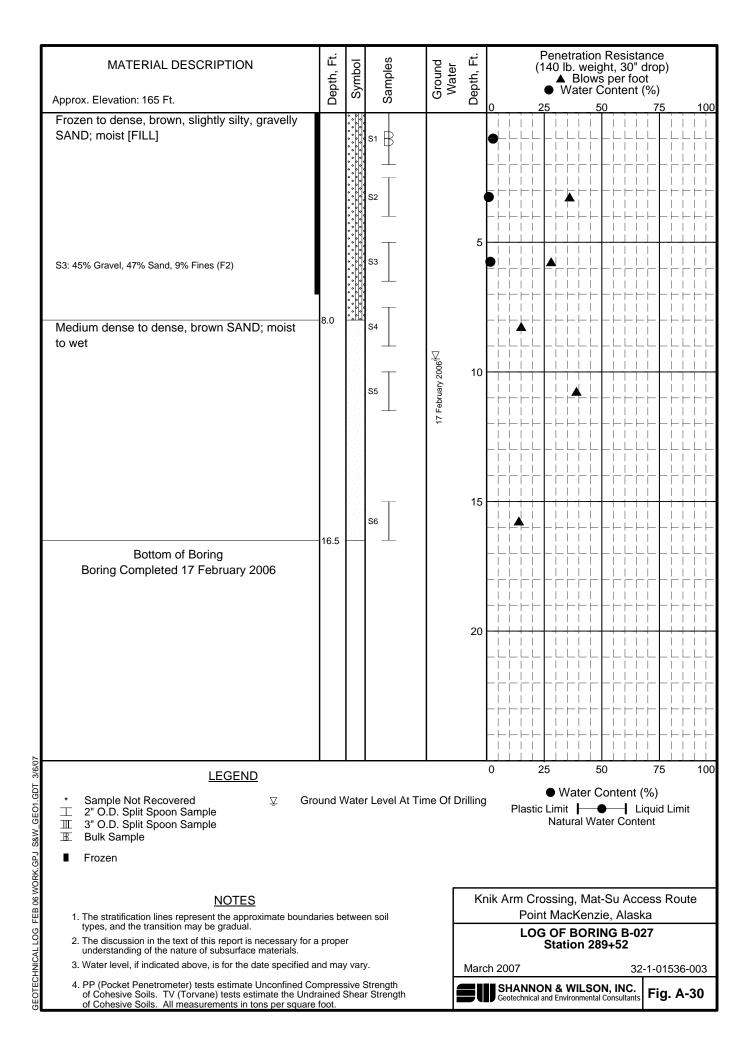


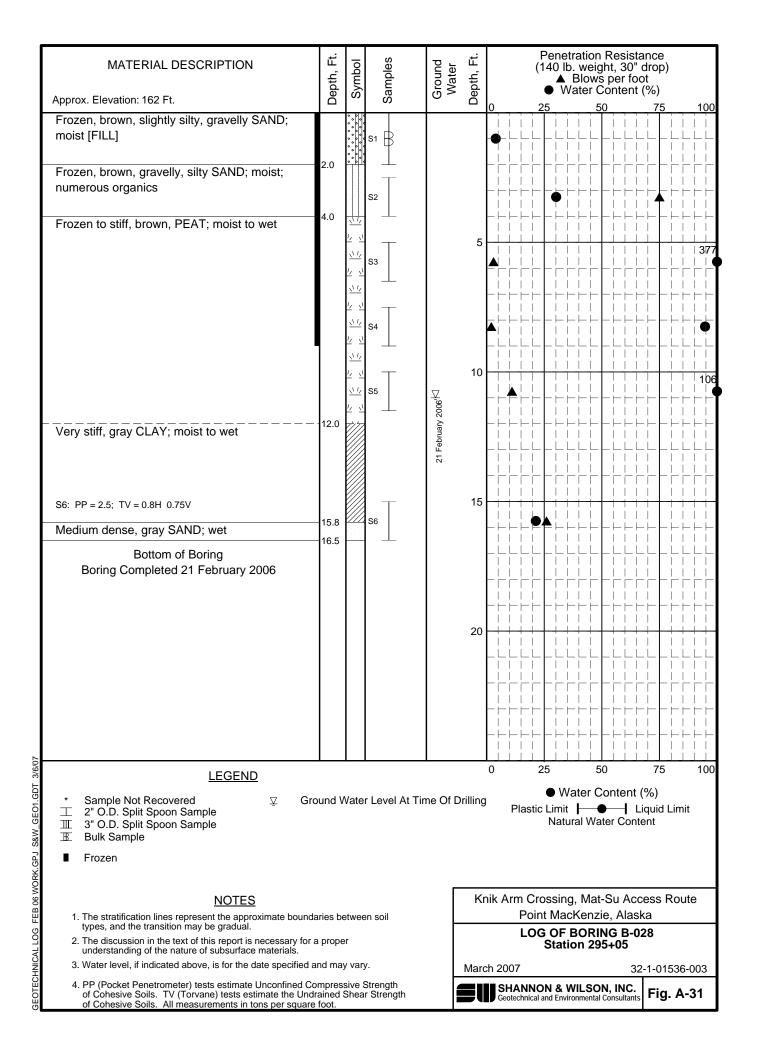


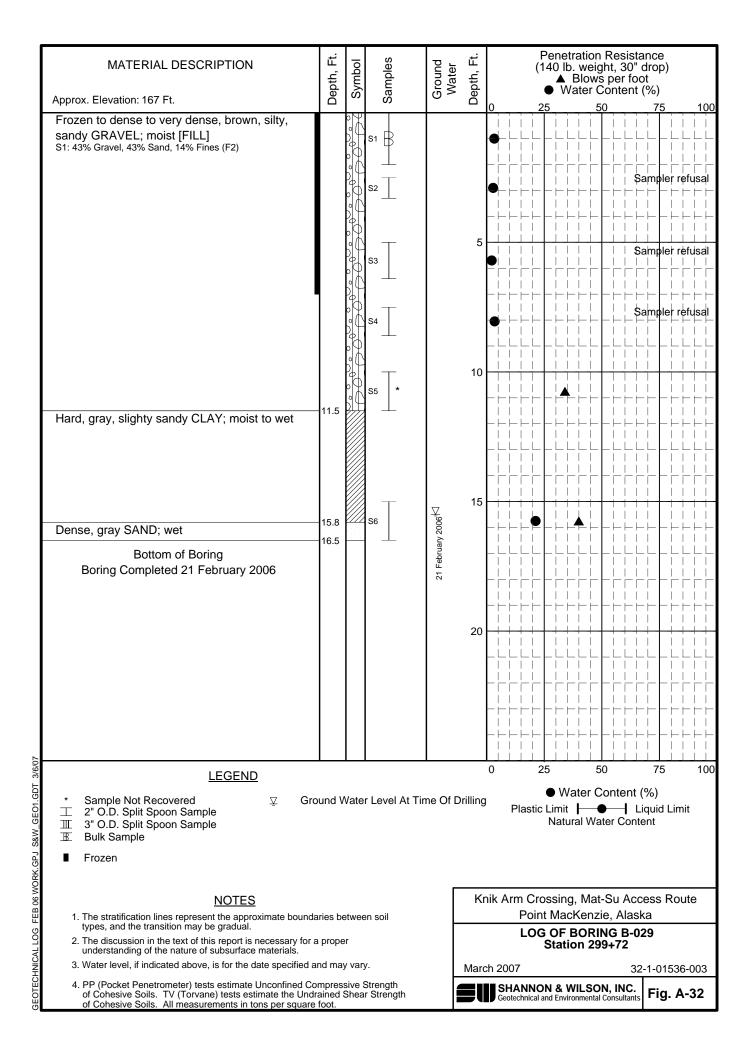


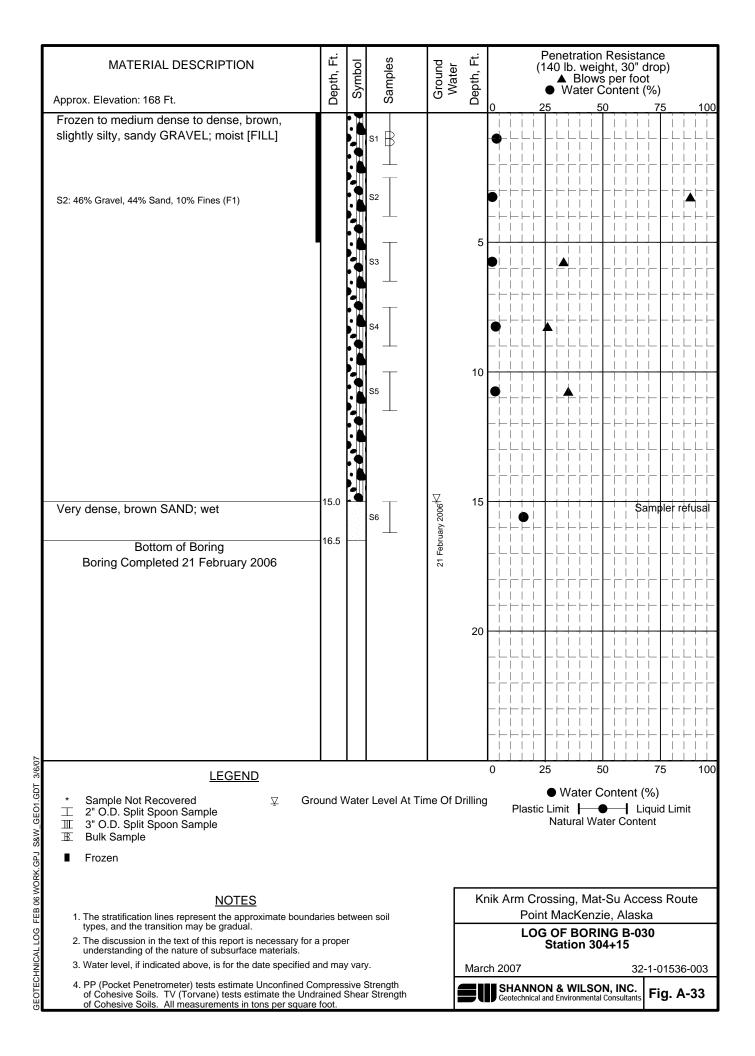


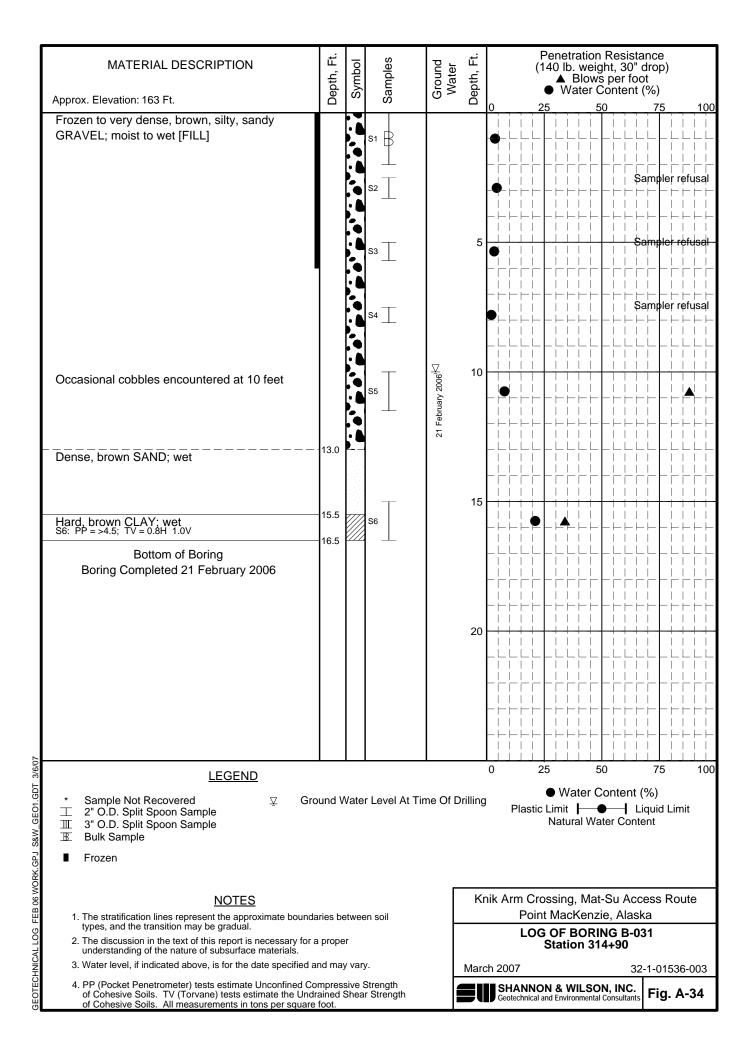


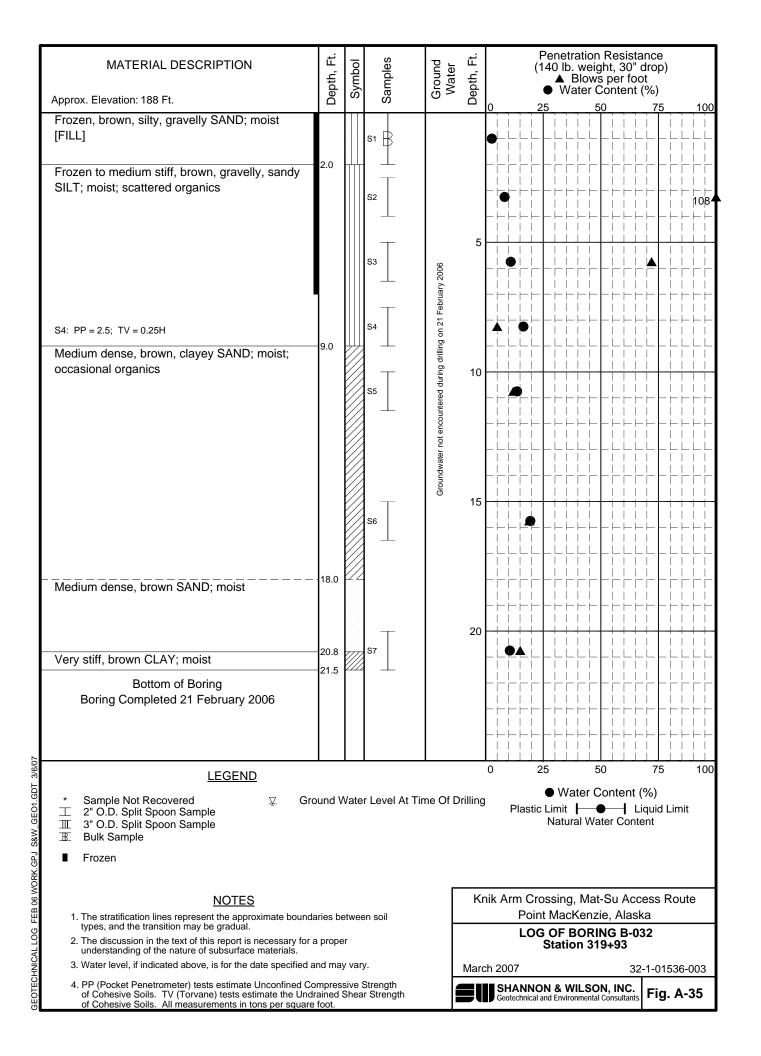


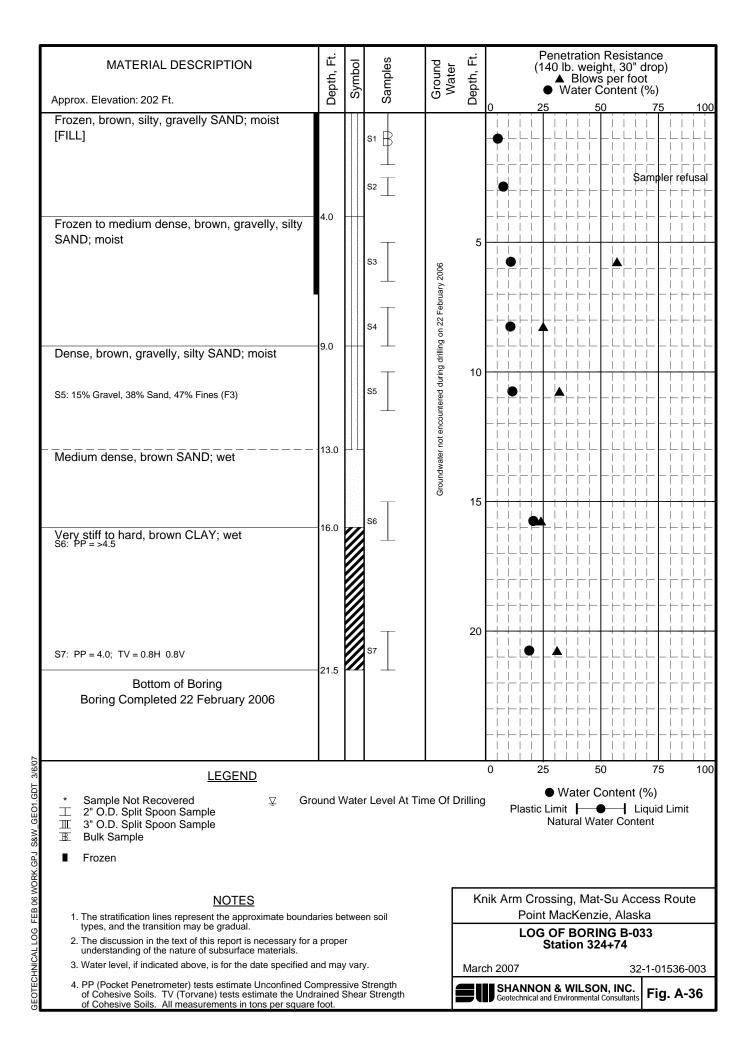


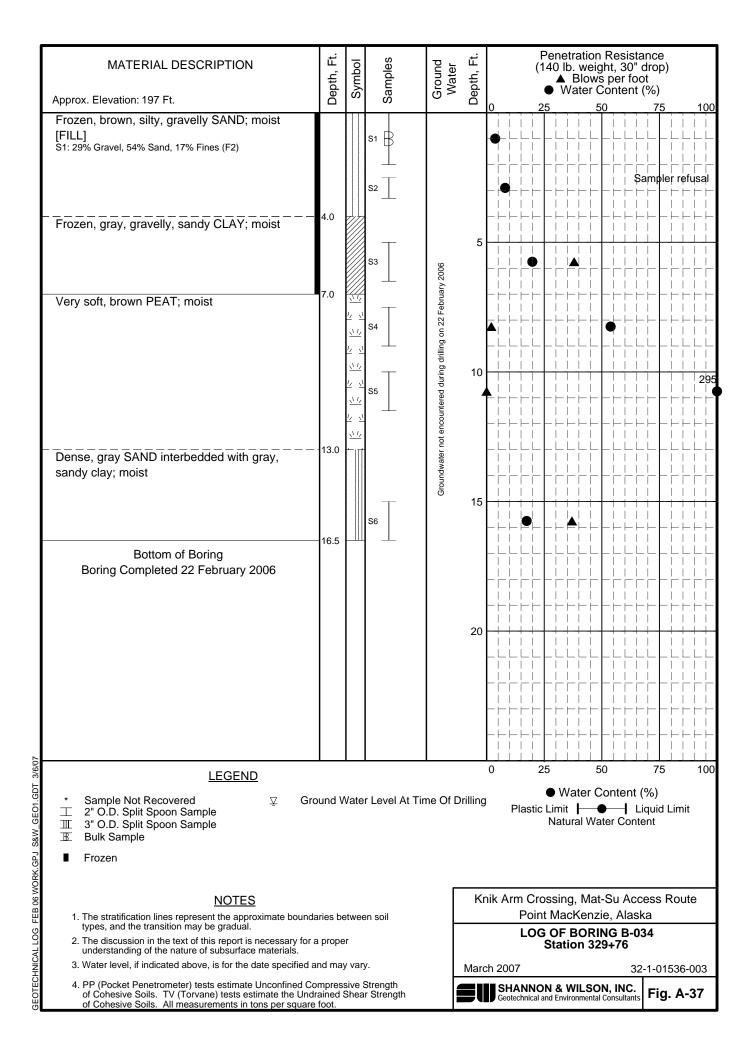


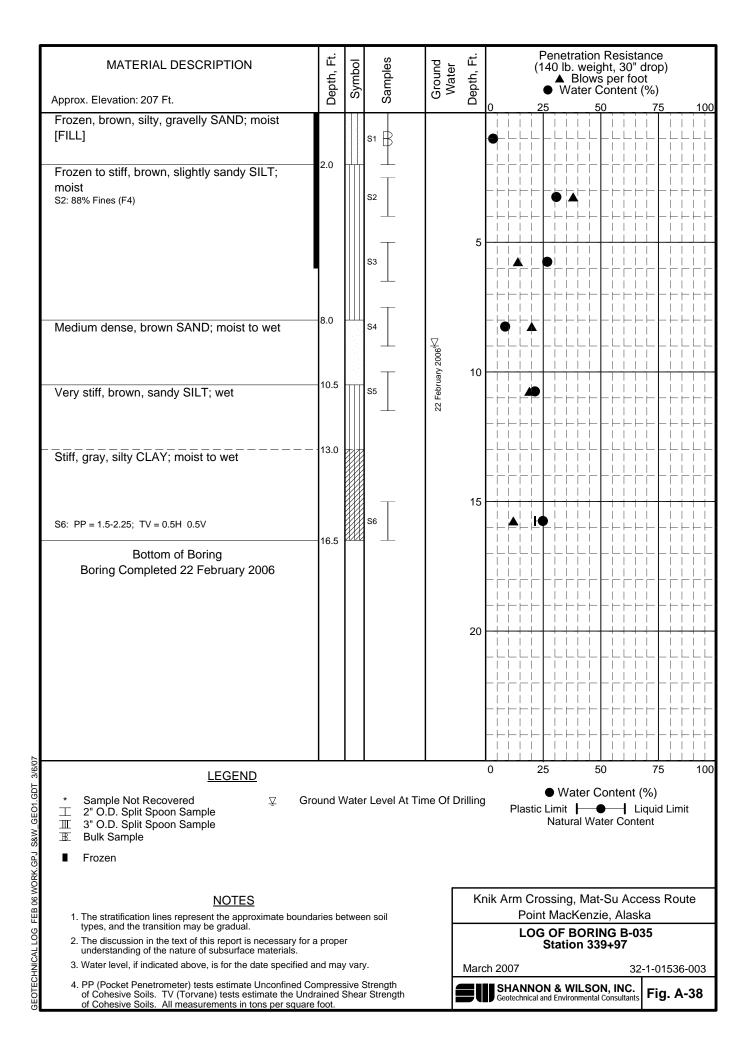


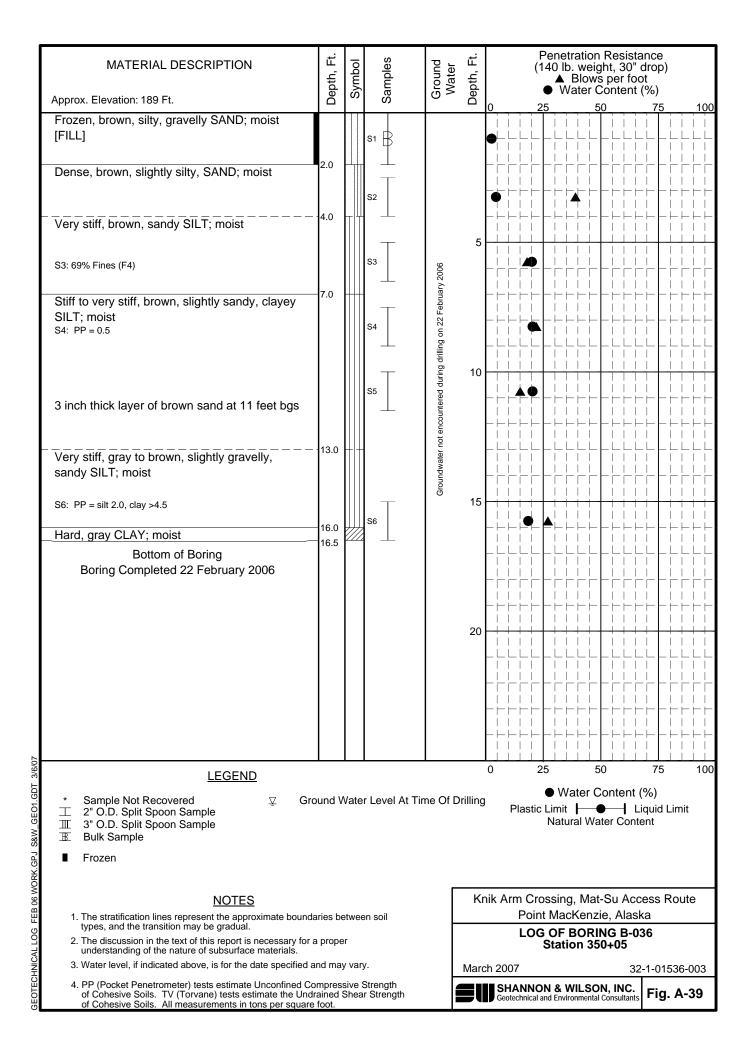


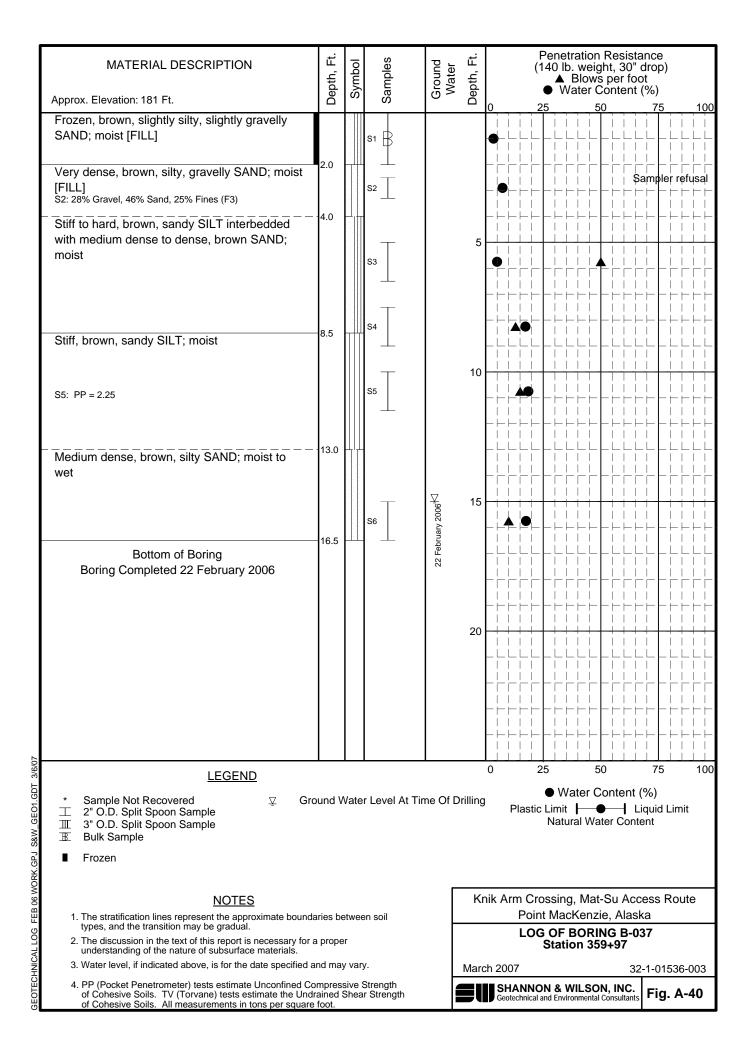


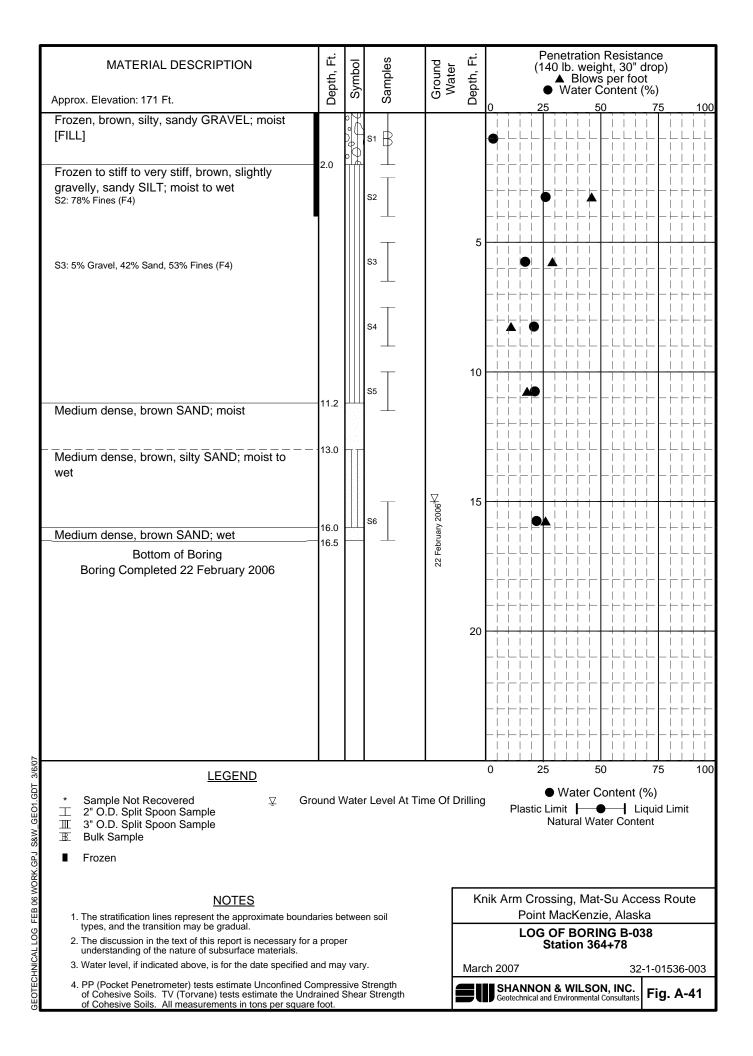


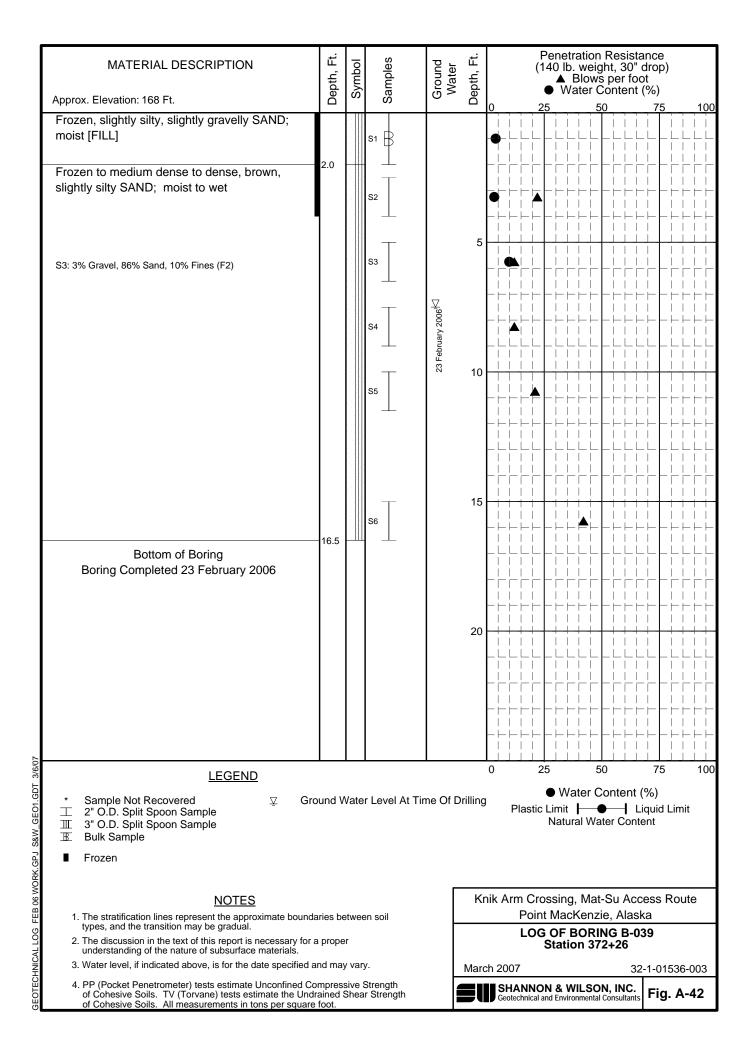


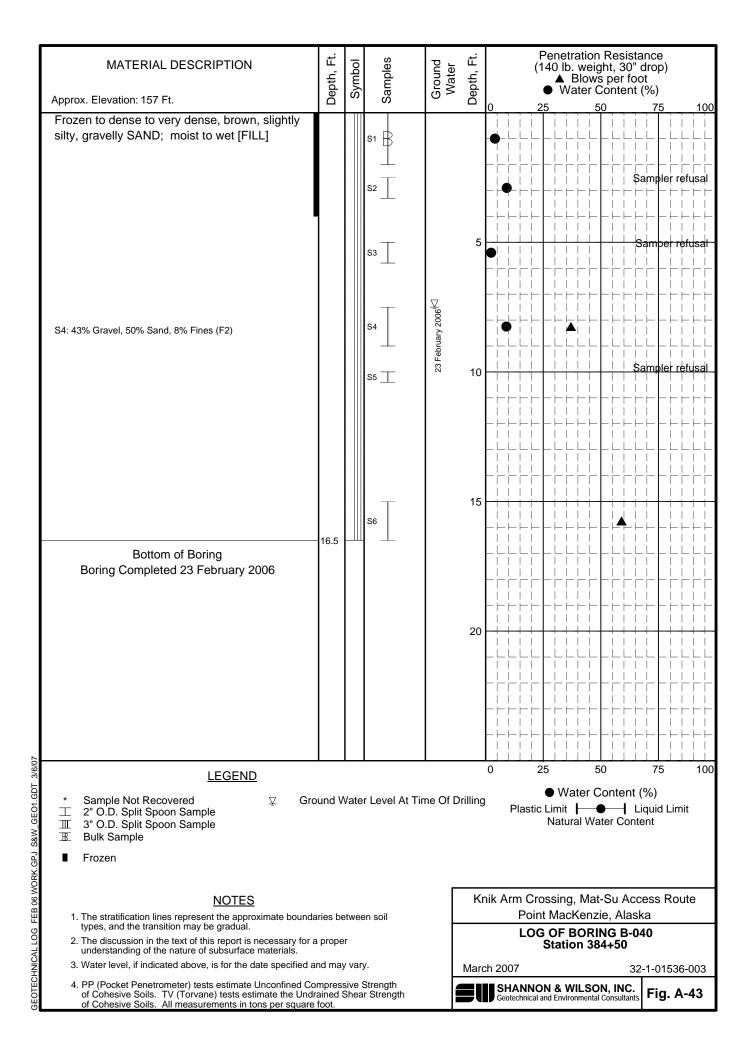




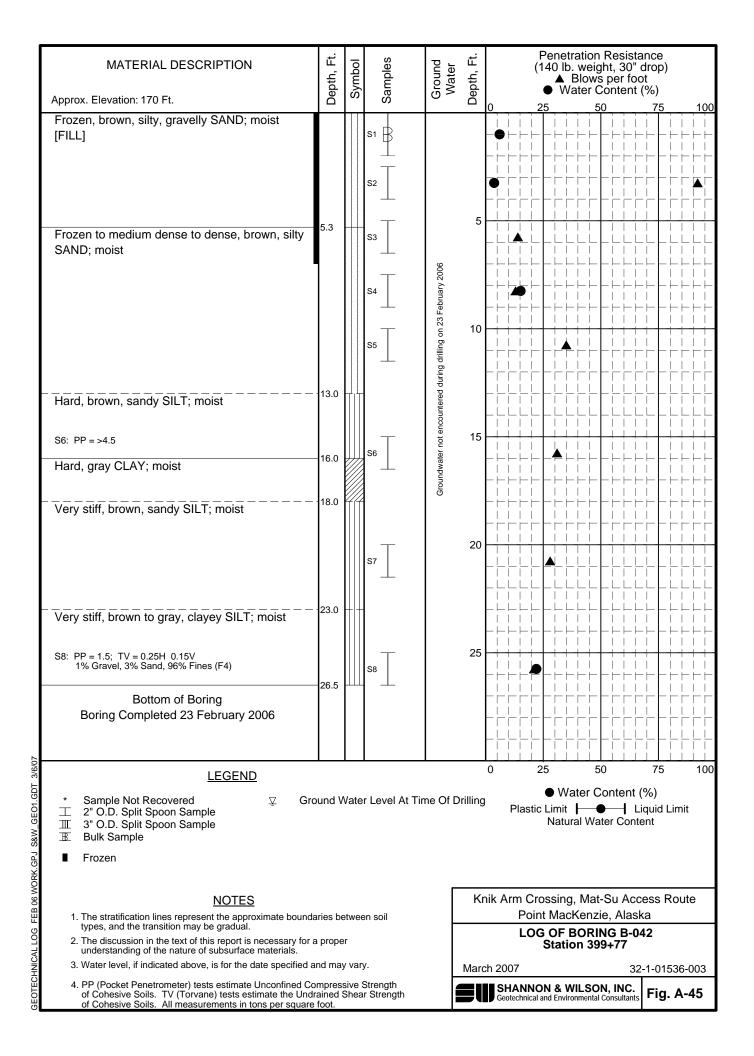


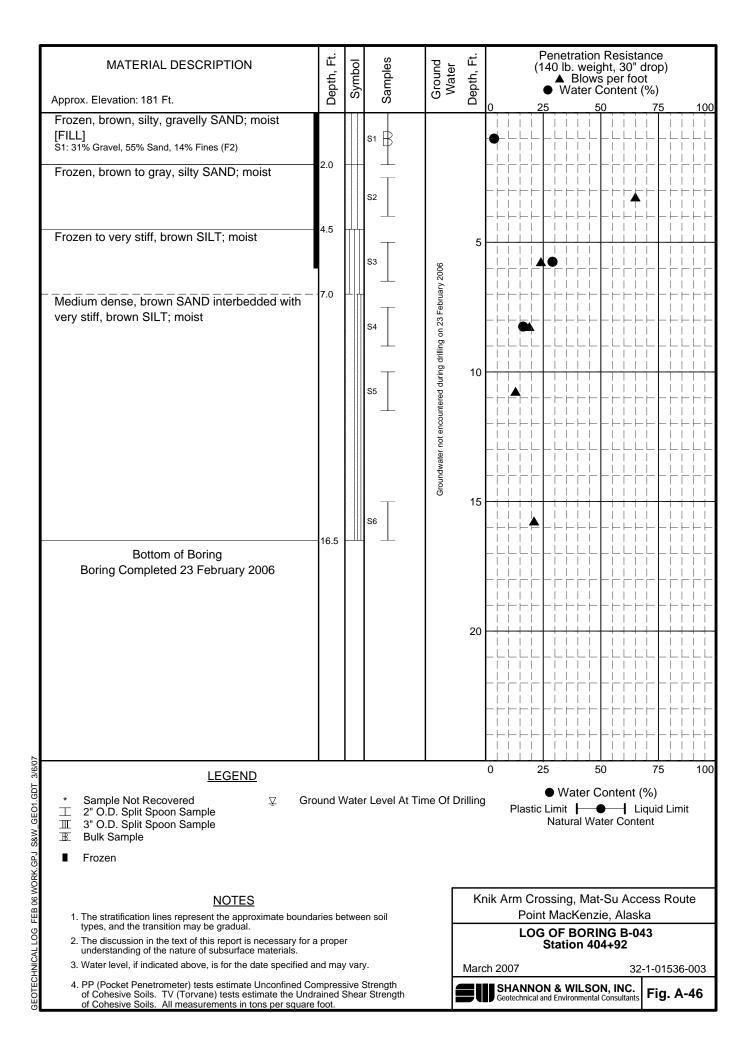


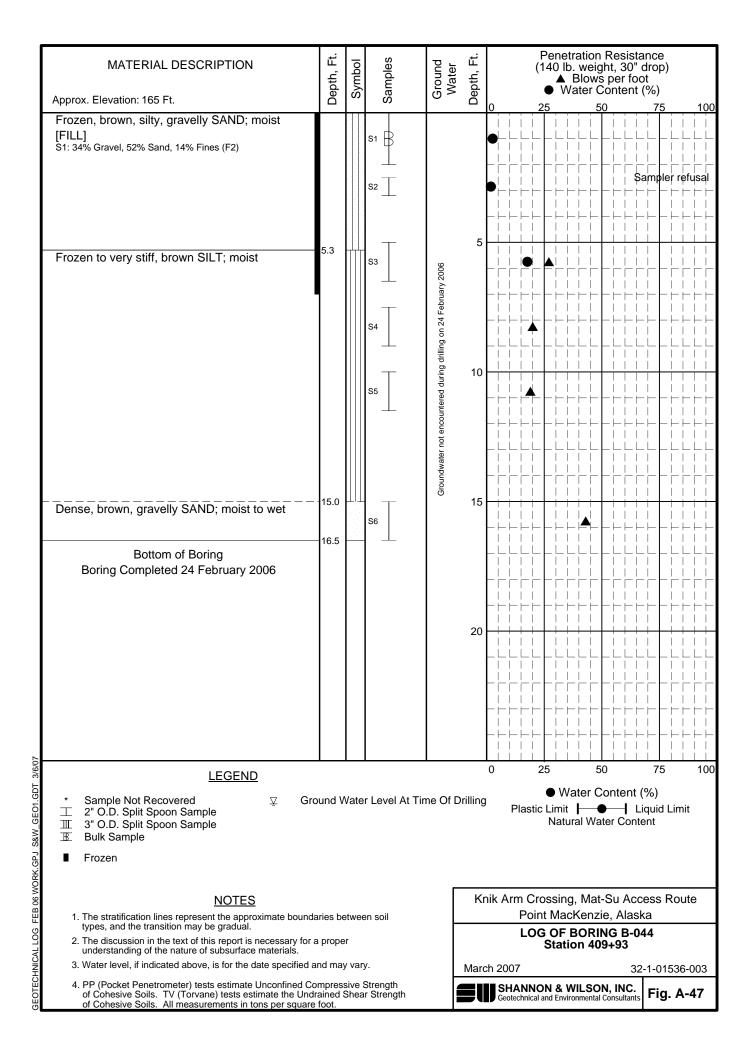


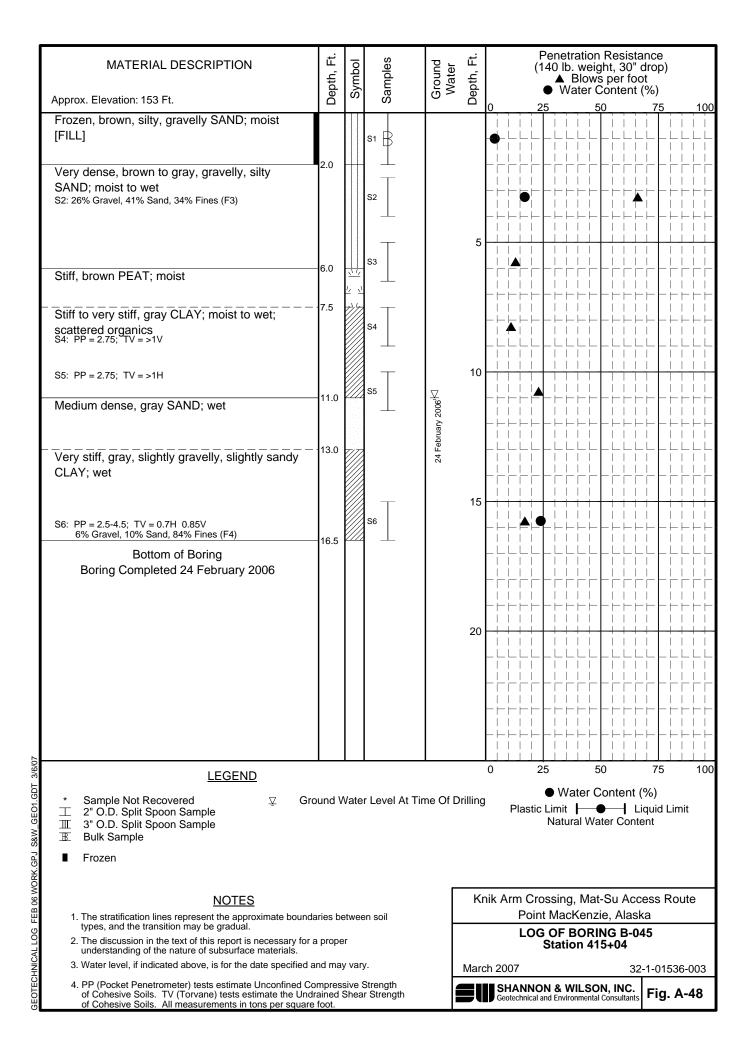


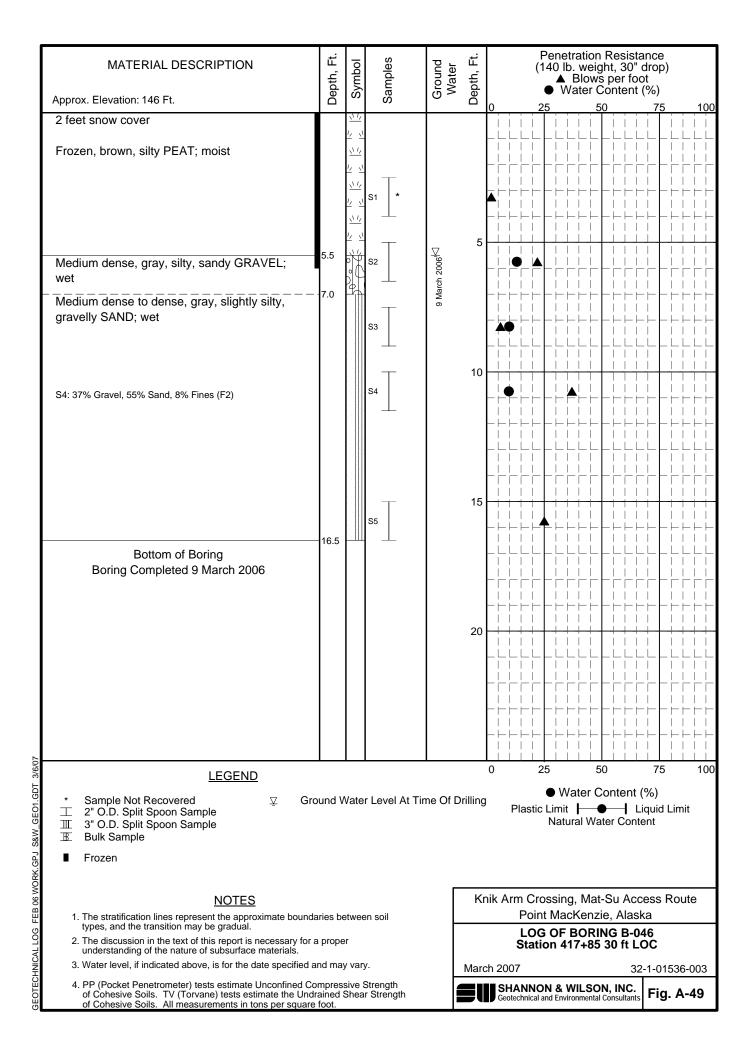


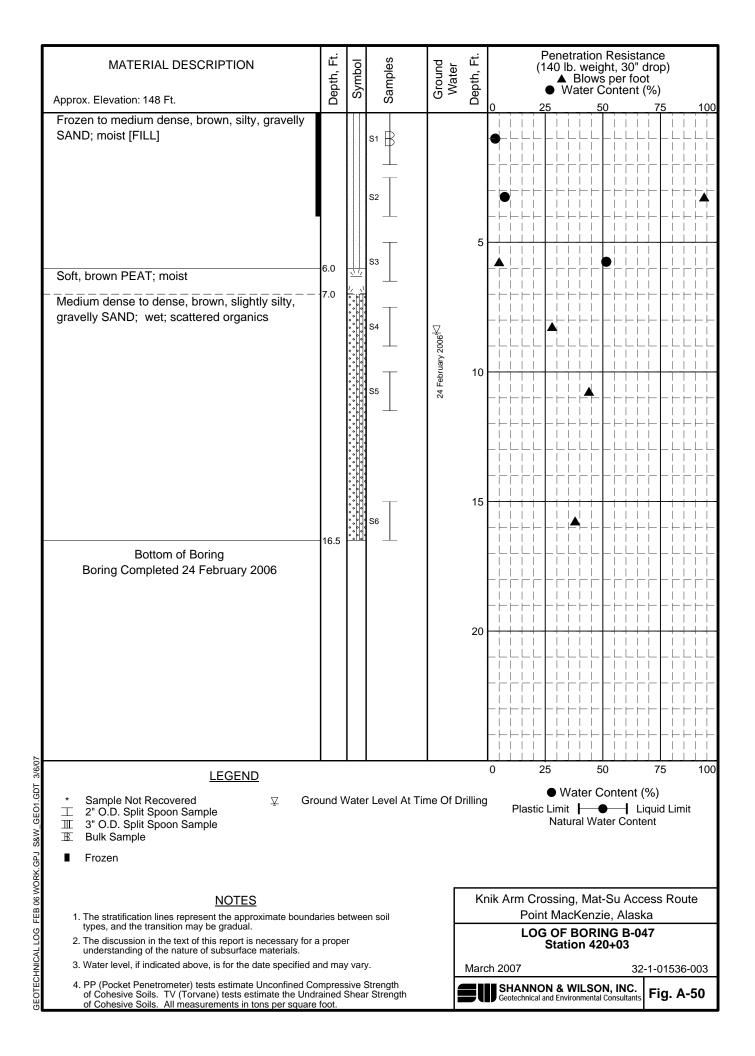


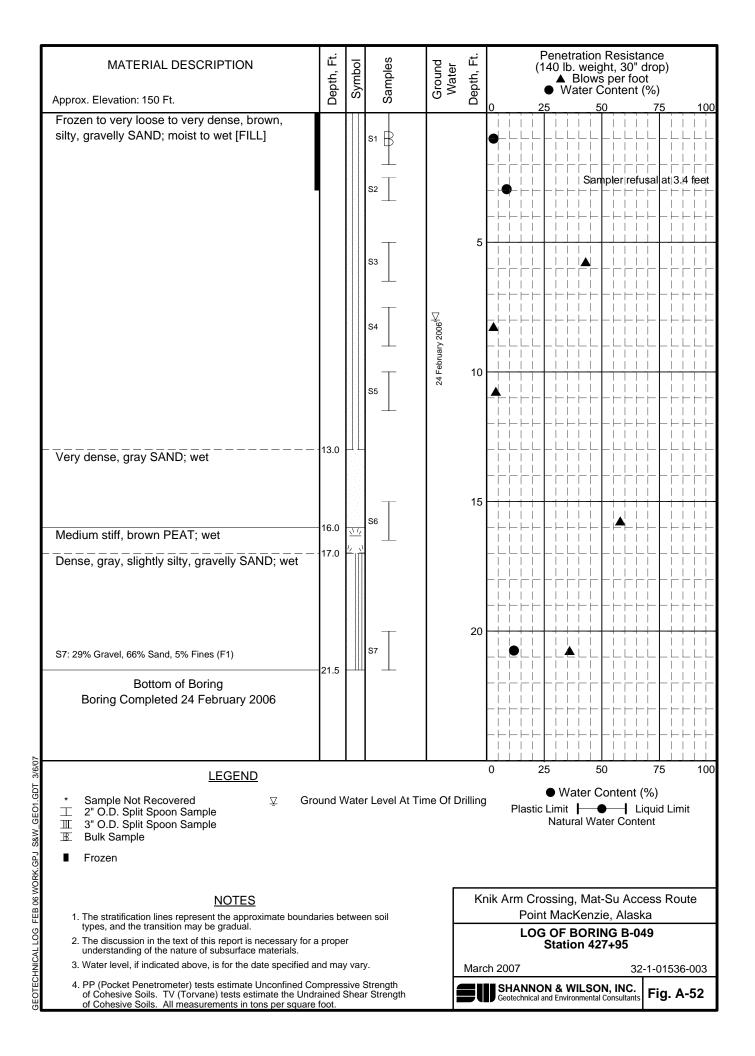


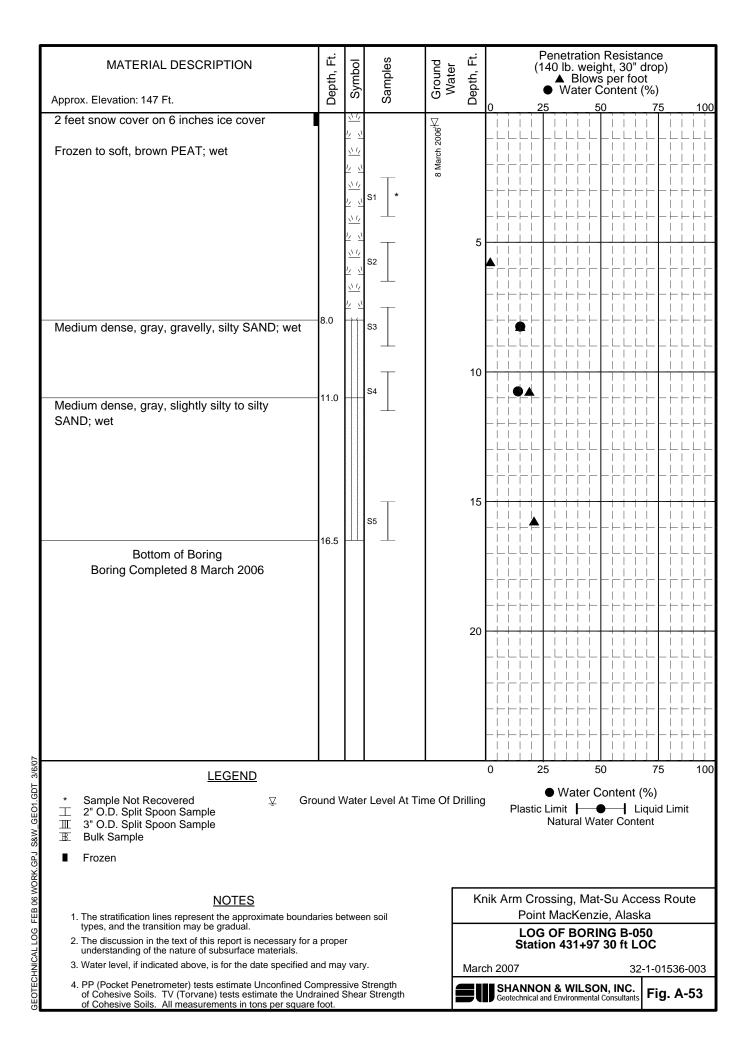


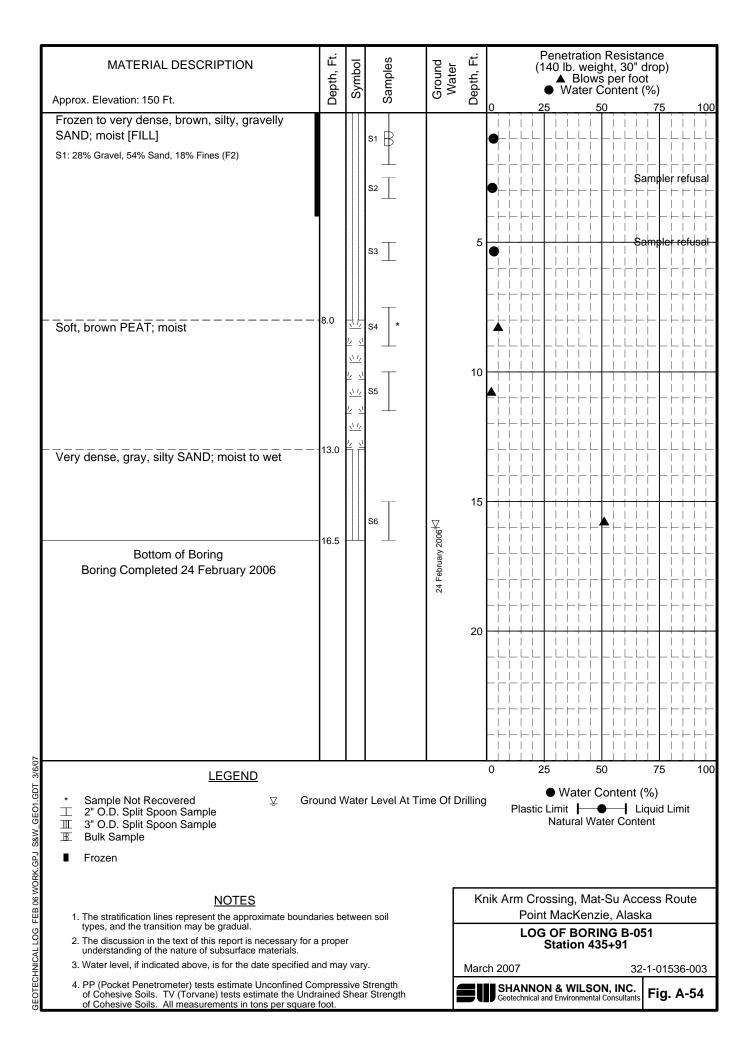


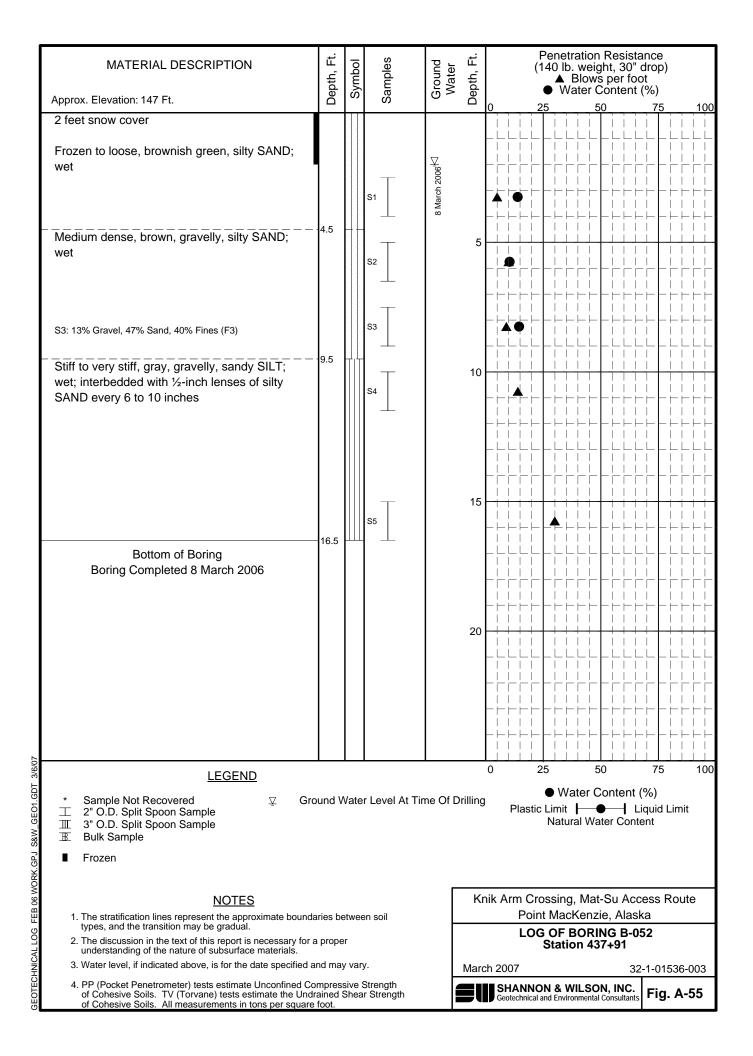


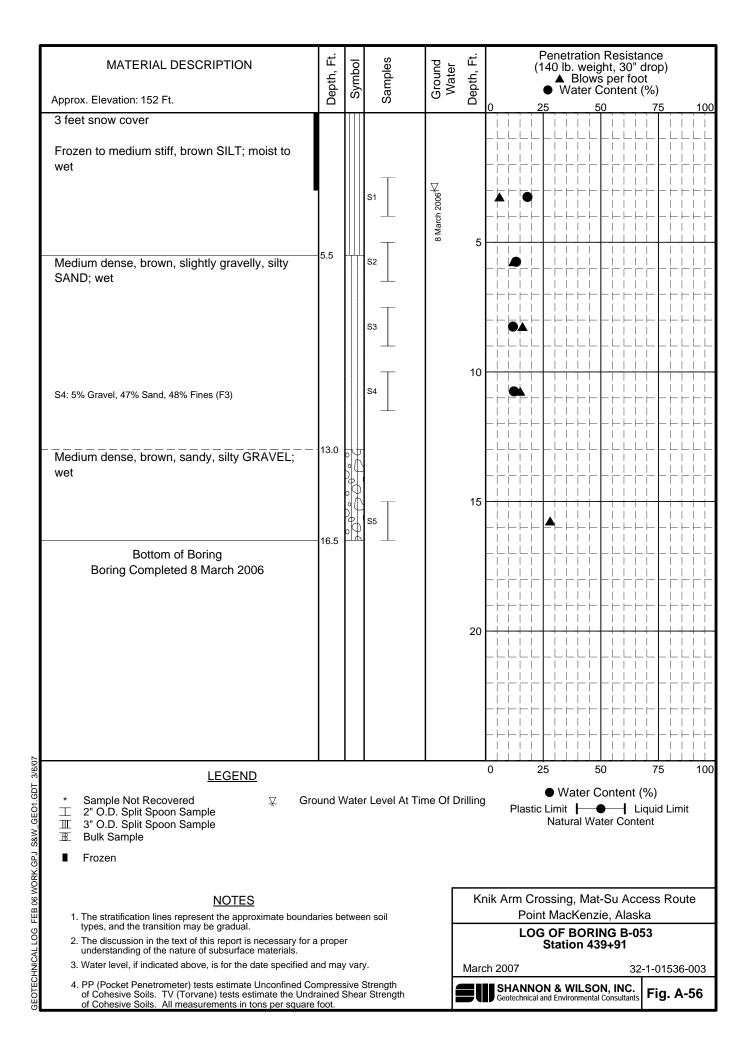


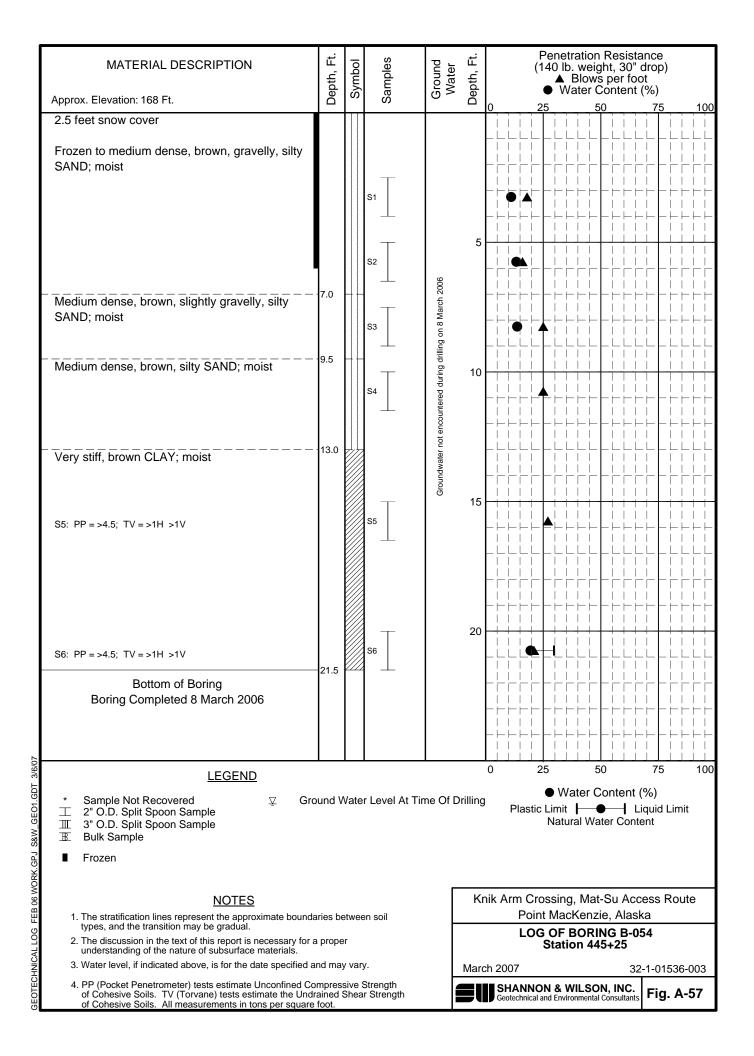


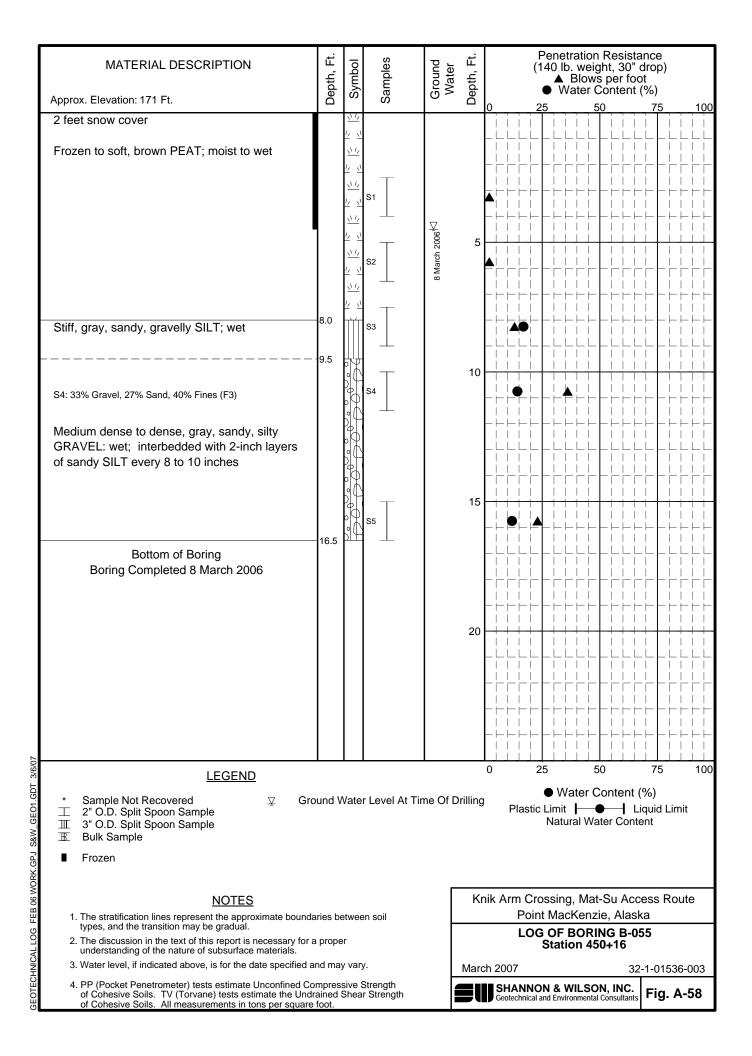


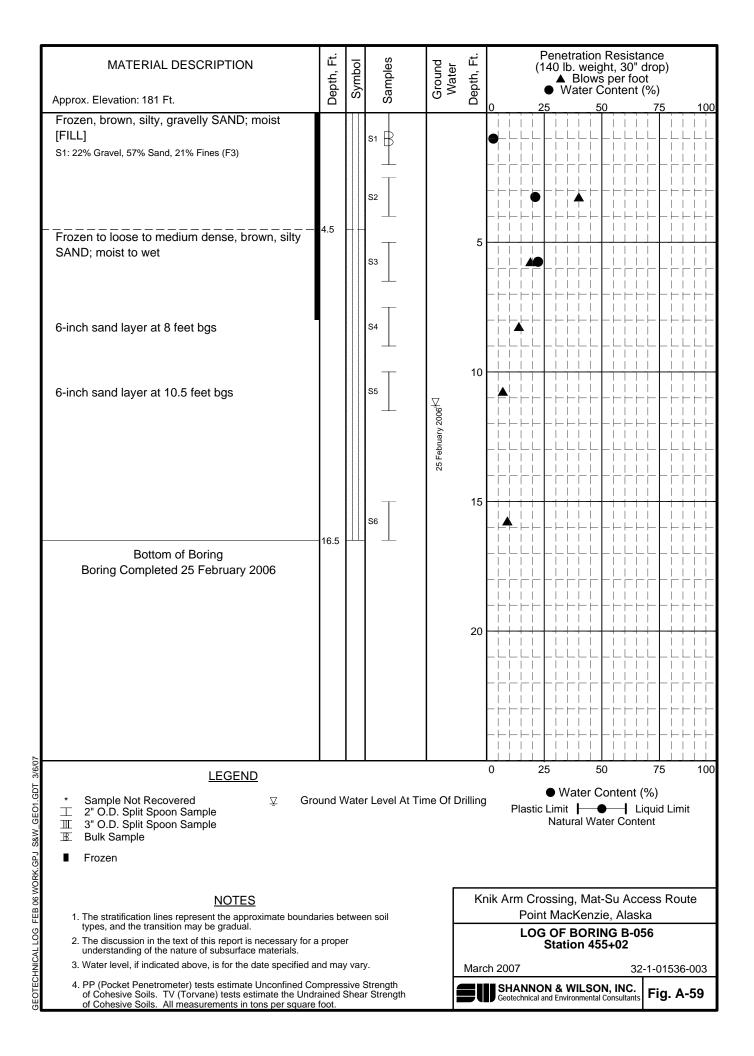


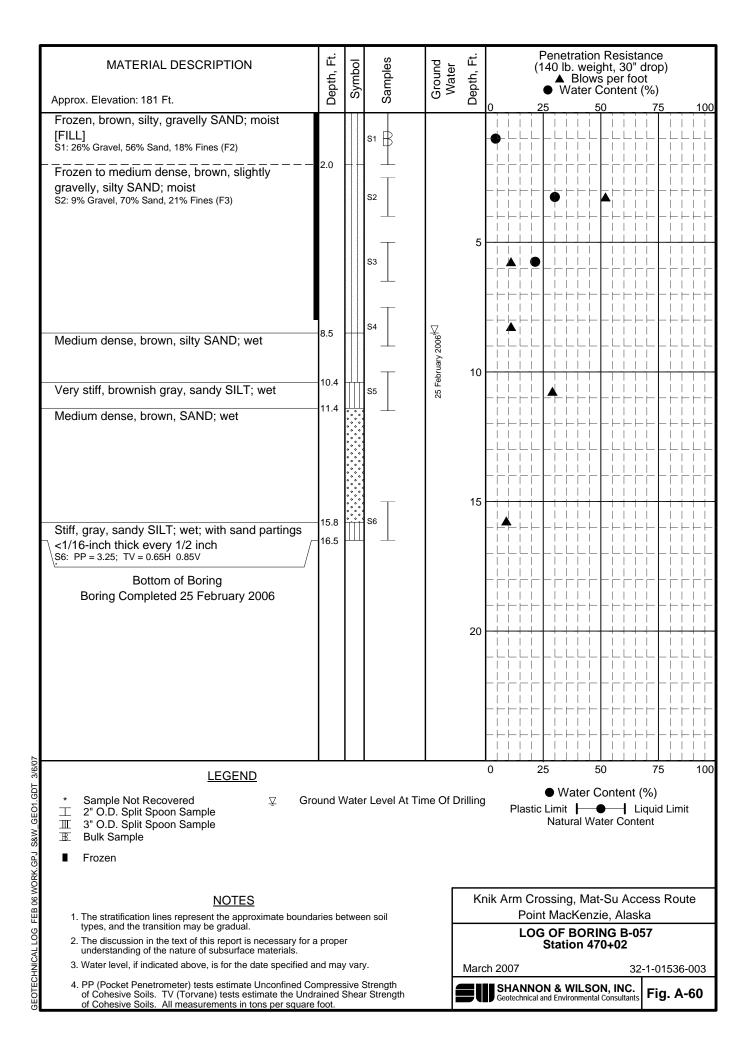


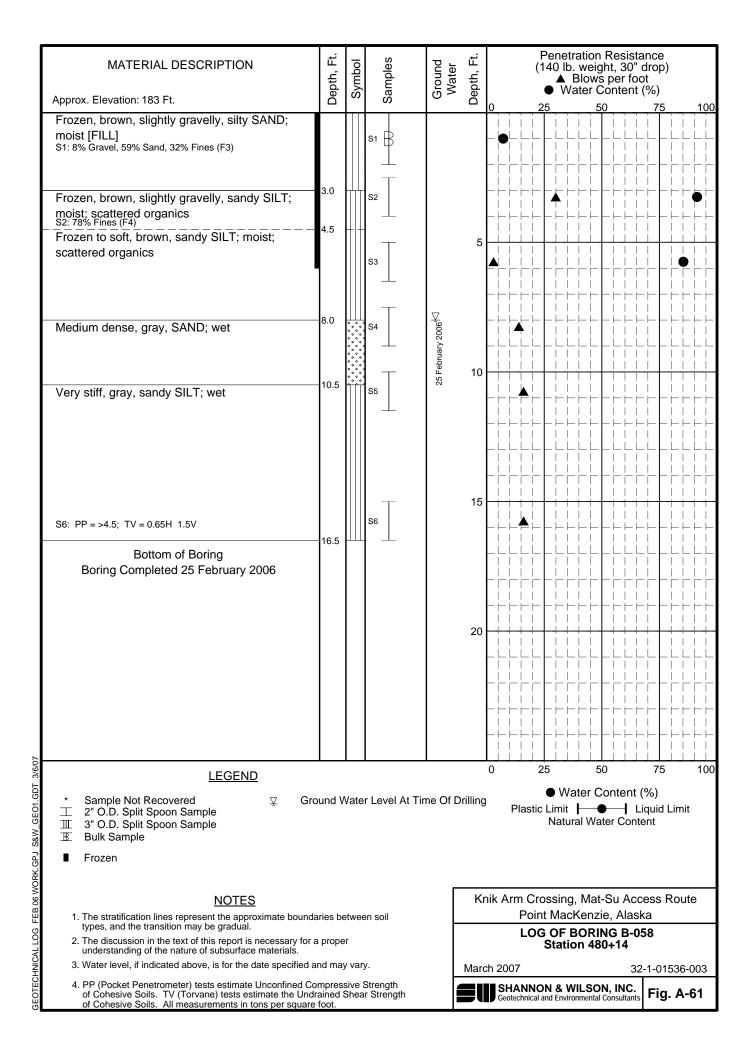

MATERIAL DESCRIPTION Approx. Elevation: 145 Ft.	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Penetration Resistance (140 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)		
2 feet snow cover over 10 inches ice cover		<u>\\/</u>	0,	∇		0 25 50 75 100		
Frozen, brown PEAT; wet	2.7	<u>/ /</u> <u>\' //</u> / <u>/ /</u>	. —	9 March 2006 ^t ∐				
Frozen to loose, gray, slightly gravelly, slightly silty SAND; wet			S1 S2		5			
Loose to medium dense, gray SAND; wet	7.0		S3		10			
Very soft, brown PEAT; wet	-11.4							
			. \$5		15			
Very soft, gray, organic CLAY; wet; with shell fragments S6: Atterberg Liquid Limit 186, Plastic Limit 61, Plasticity	-20.1		s6		20			
Medium dense, gray, slightly silty SAND; wet	-23.0		S7		25			
Bottom of Boring Boring Completed 9 March 2006	-26.5							
LEGEND						0 25 50 75 100		
LEGEND 0 25 50 75 100 * Sample Not Recovered ✓ Ground Water Level At Time Of Drilling ● Water Content (%) □ 2" O.D. Split Spoon Sample ● Liquid Limit □ 3" O.D. Split Spoon Sample ● Liquid Limit □ 3" O.D. Split Spoon Sample ● Liquid Limit □ Bulk Sample ● Liquid Limit ■ Frozen NOTES 1. The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. Knik Arm Crossing, Mat-Su Access Route 2. The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials. LOG OF BORING B-048 3. Water level, if indicated above, is for the date specified and may vary. 32-1-01536-003 4. PP (Pocket Penetrometer) tests estimate the Undrained Shear Strength of Cohesive Soils. TV (Torvane) tests estimate the Undrained Shear Strength of Cohesive Soils. TV (Torvane) tests estimate foot.								
<u>NOTES</u> 1. The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. 2. The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials.				F	Knik Arm Crossing, Mat-Su Access Route Point MacKenzie, Alaska LOG OF BORING B-048 Station 423+94 30 ft LOC			
3. Water level, if indicated above, is for the date specified and may vary.					Marc	sh 2007 32-1-01536-003		
4. PP (Pocket Penetrometer) tests estimate Unconfined Compressive Strength of Cohesive Soils. TV (Torvane) tests estimate the Undrained Shear Strength of Cohesive Soils. All measurements in tons per square foot.						SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Fig. A-51		

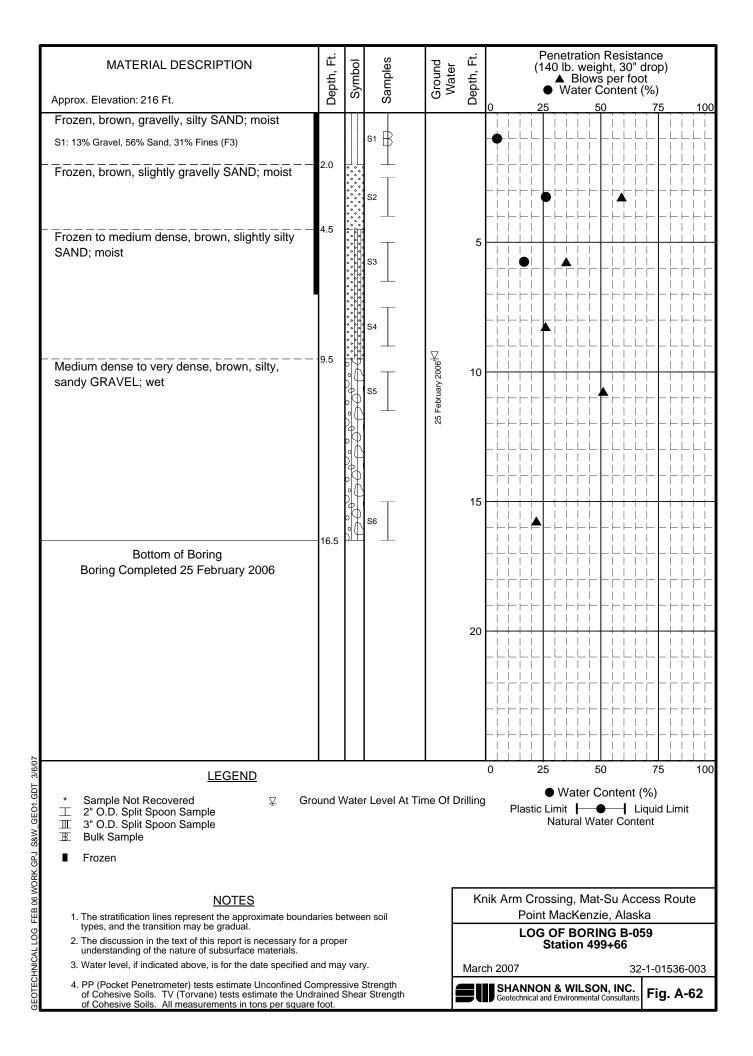


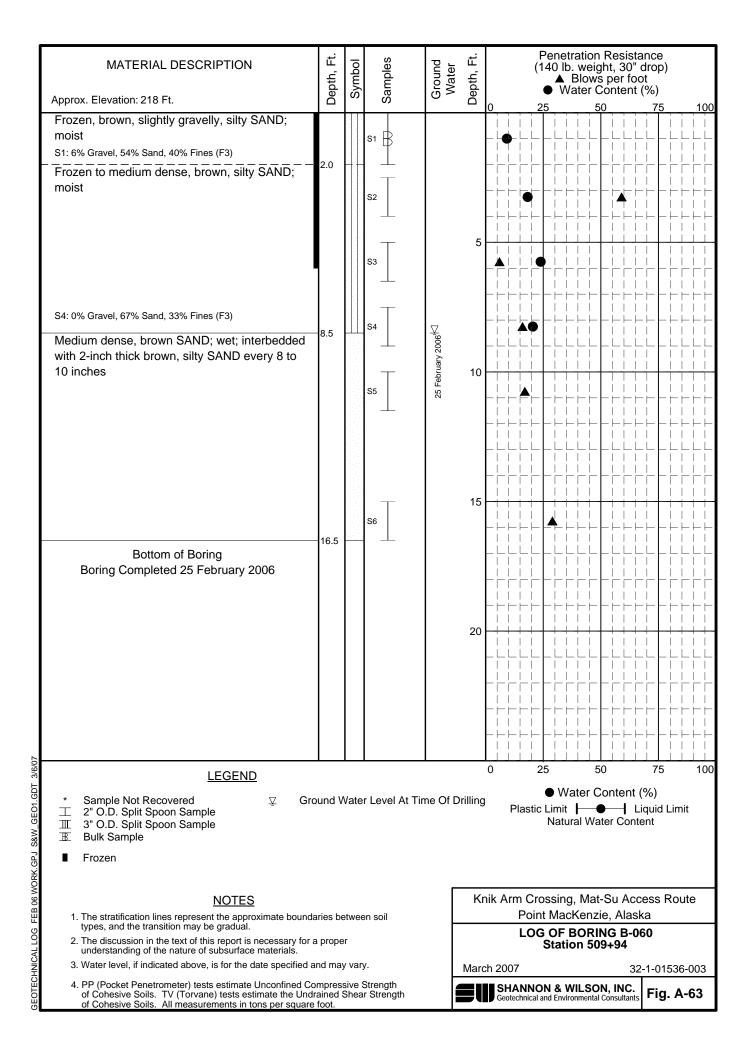


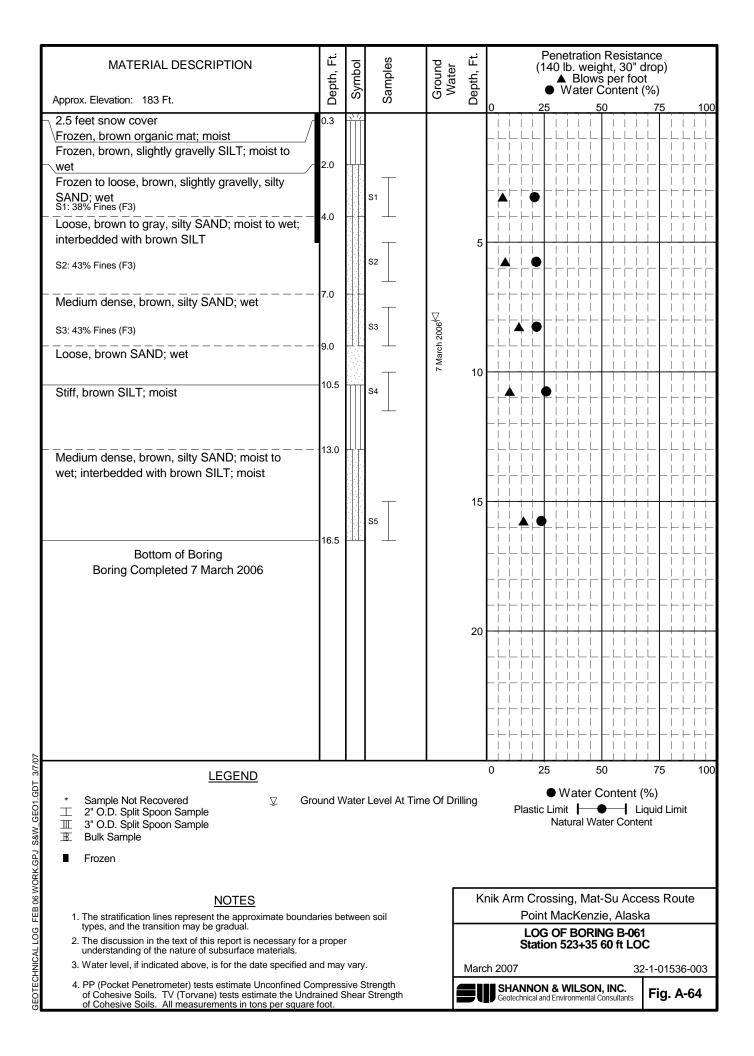


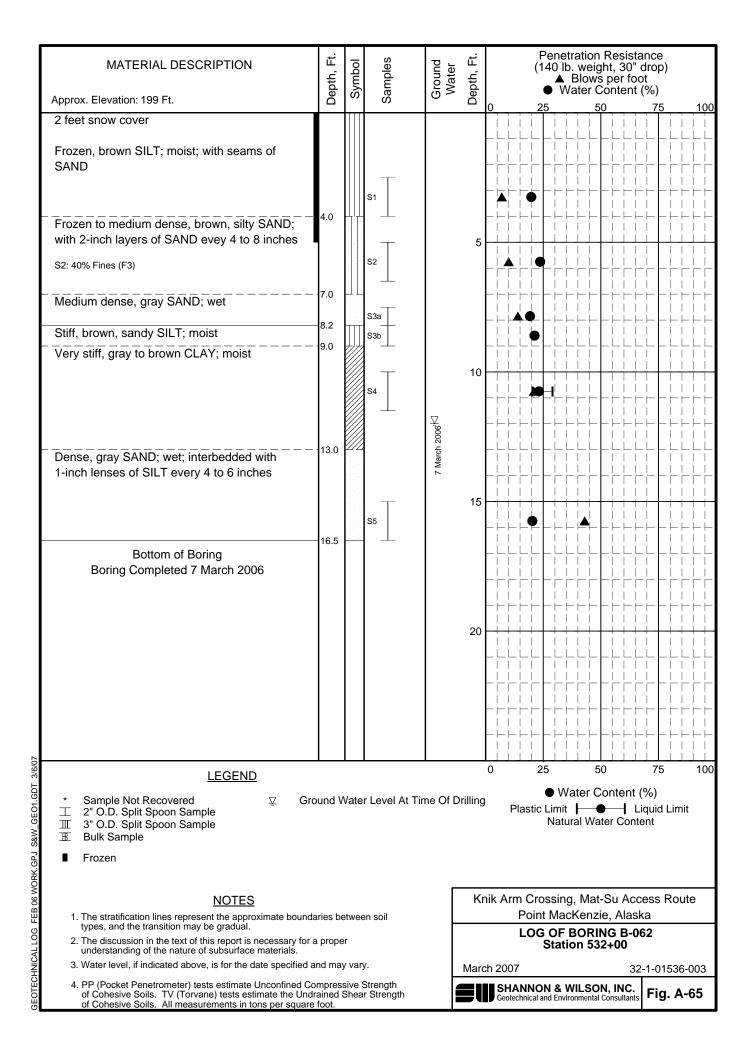


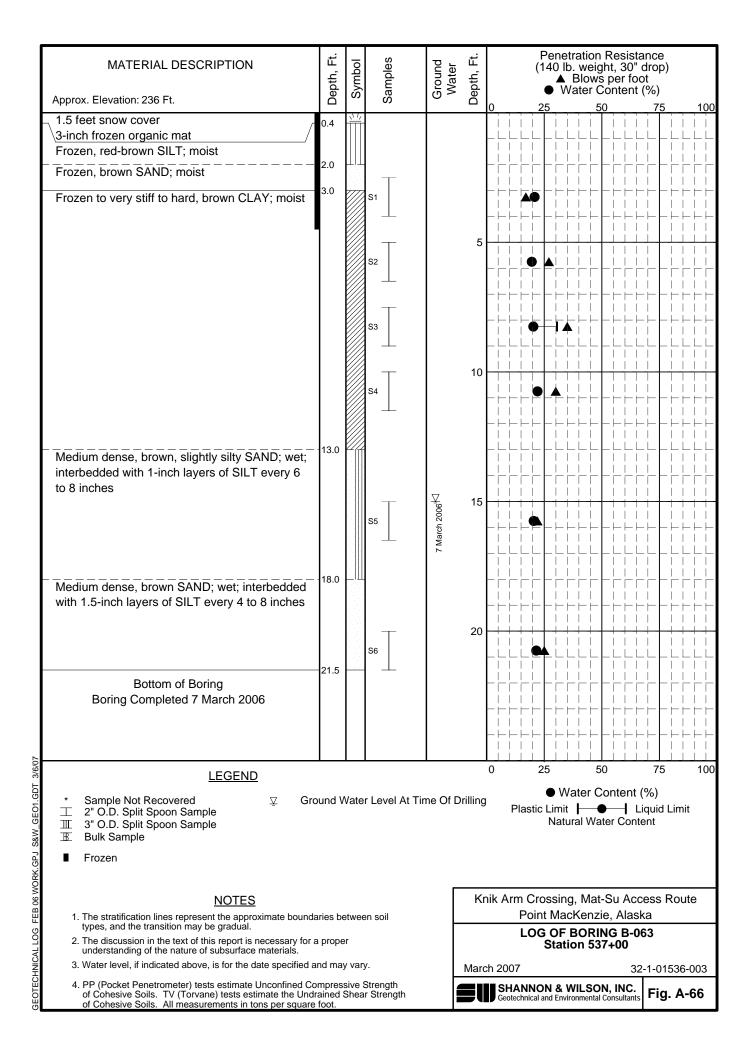


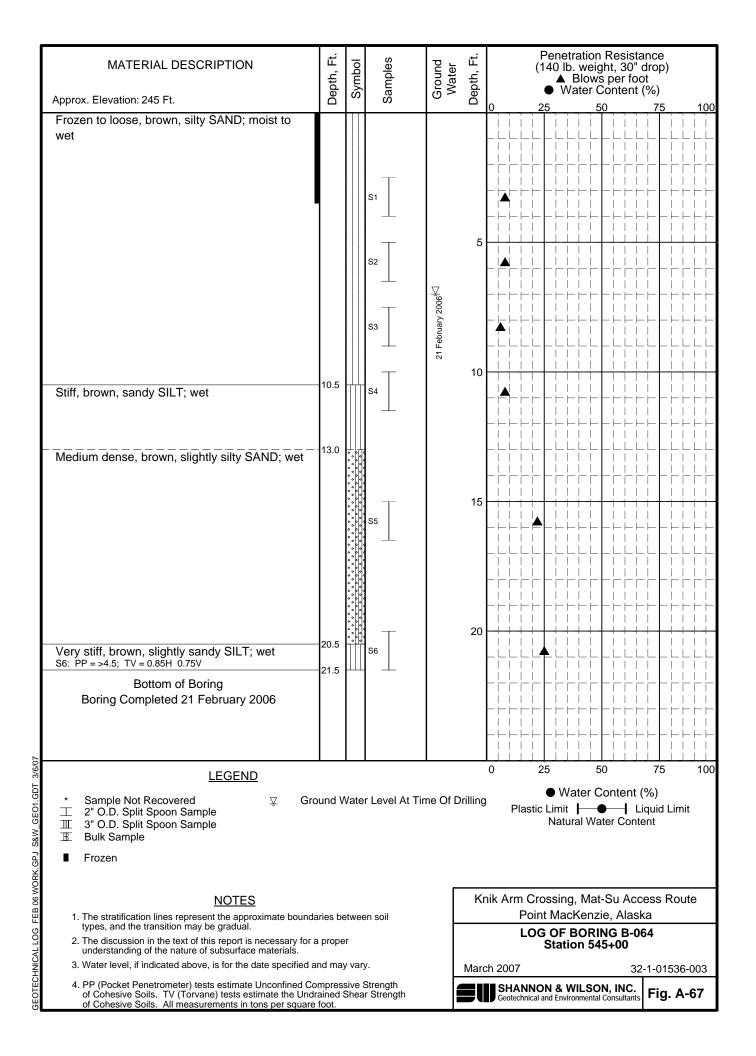


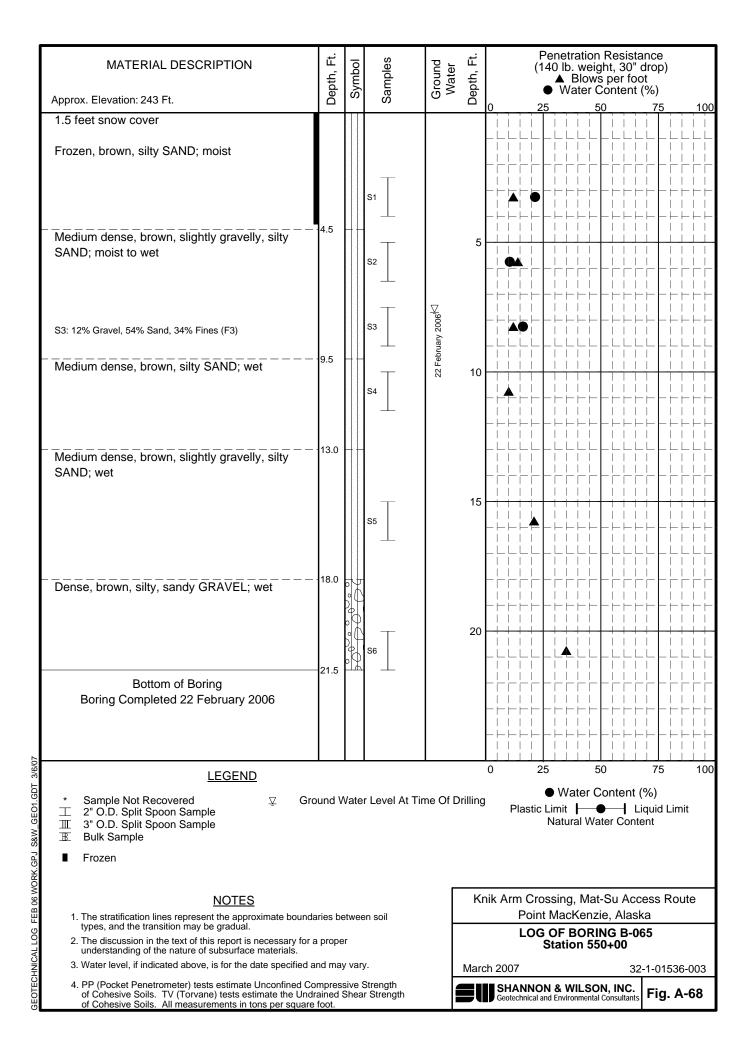


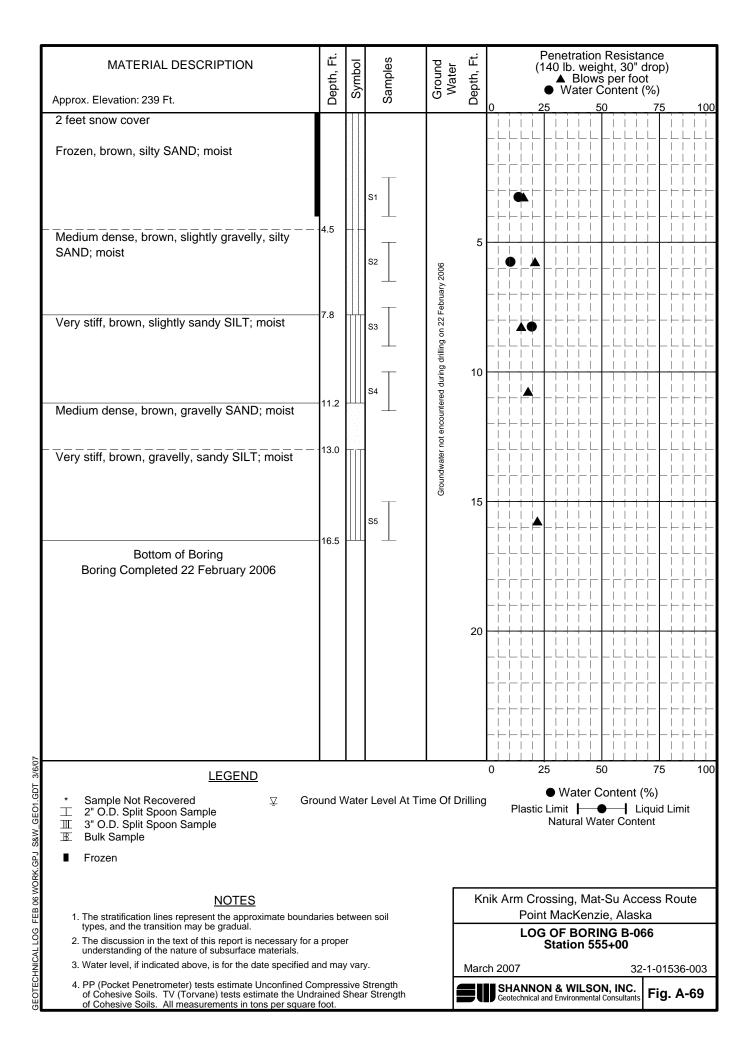


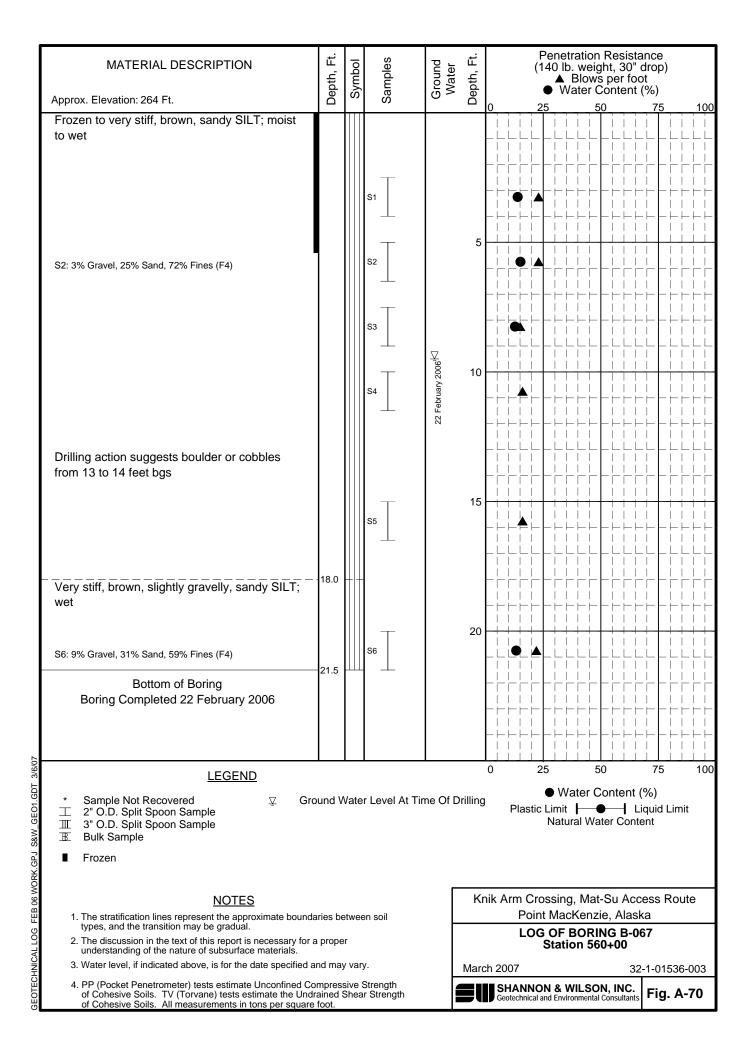


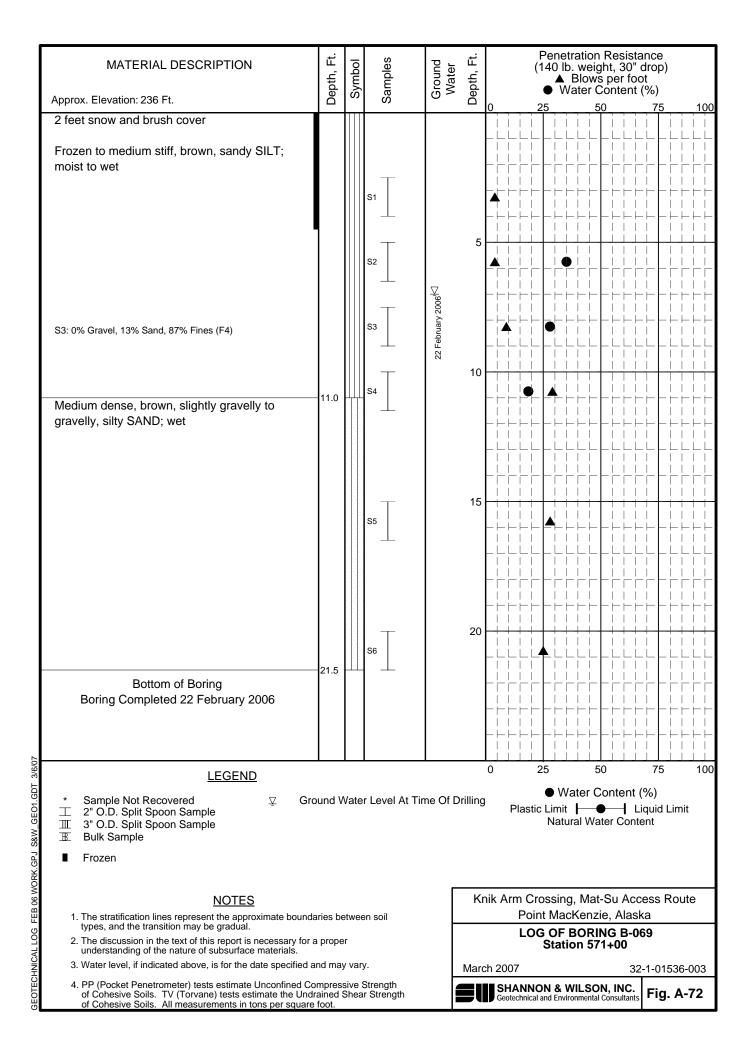




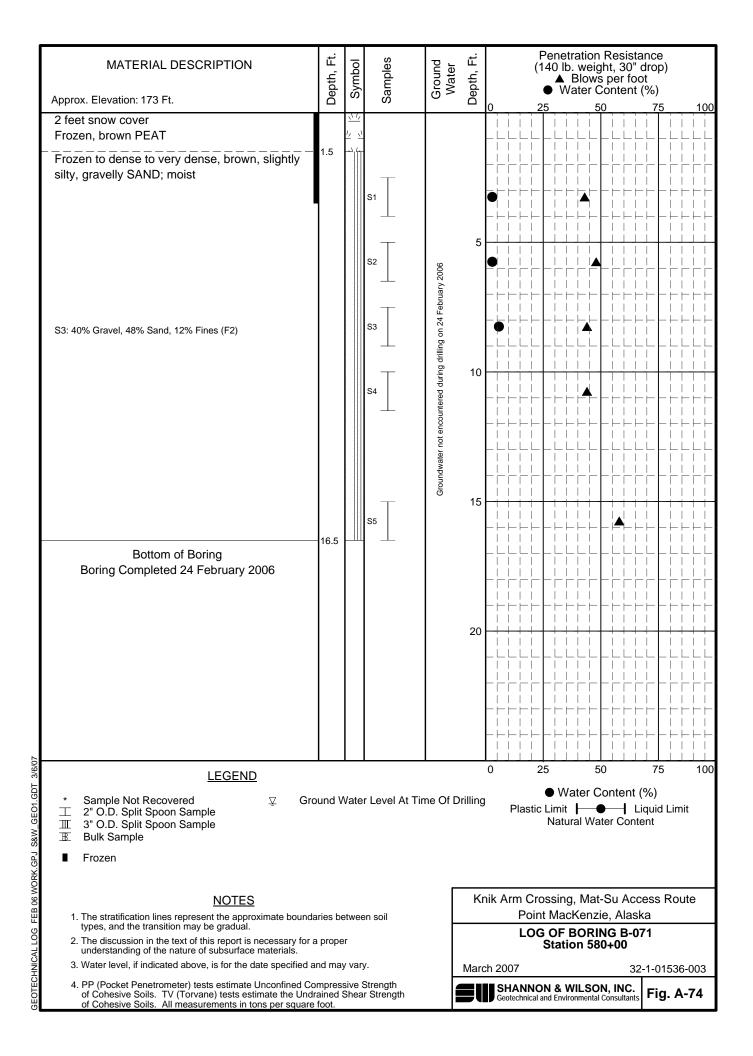


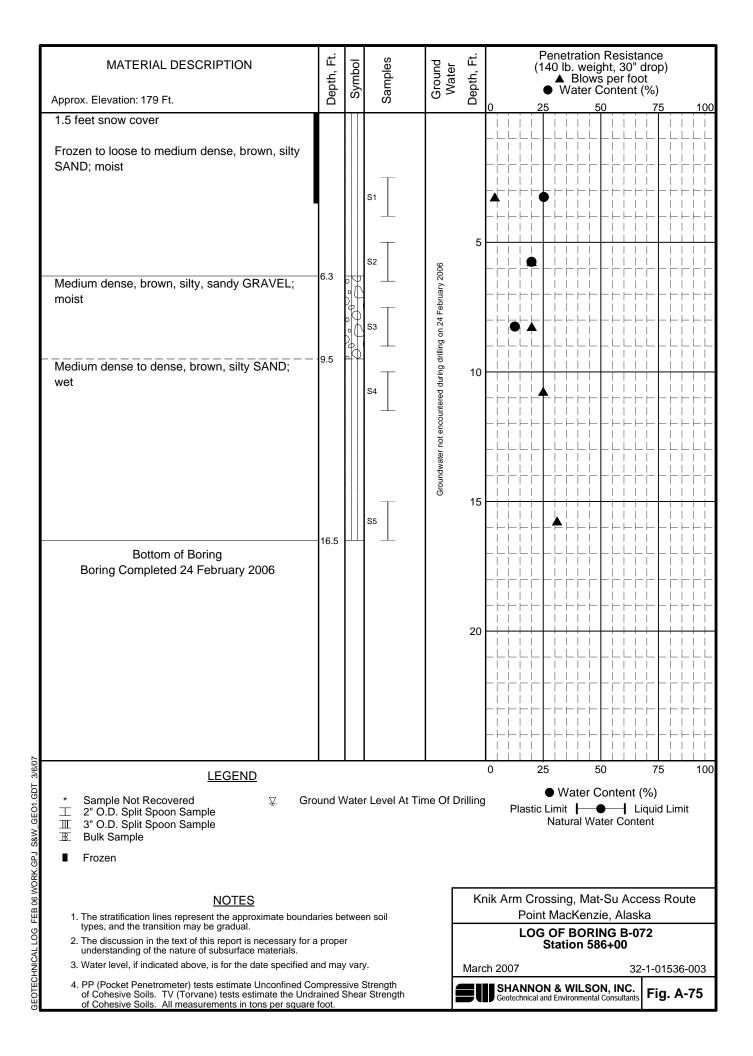


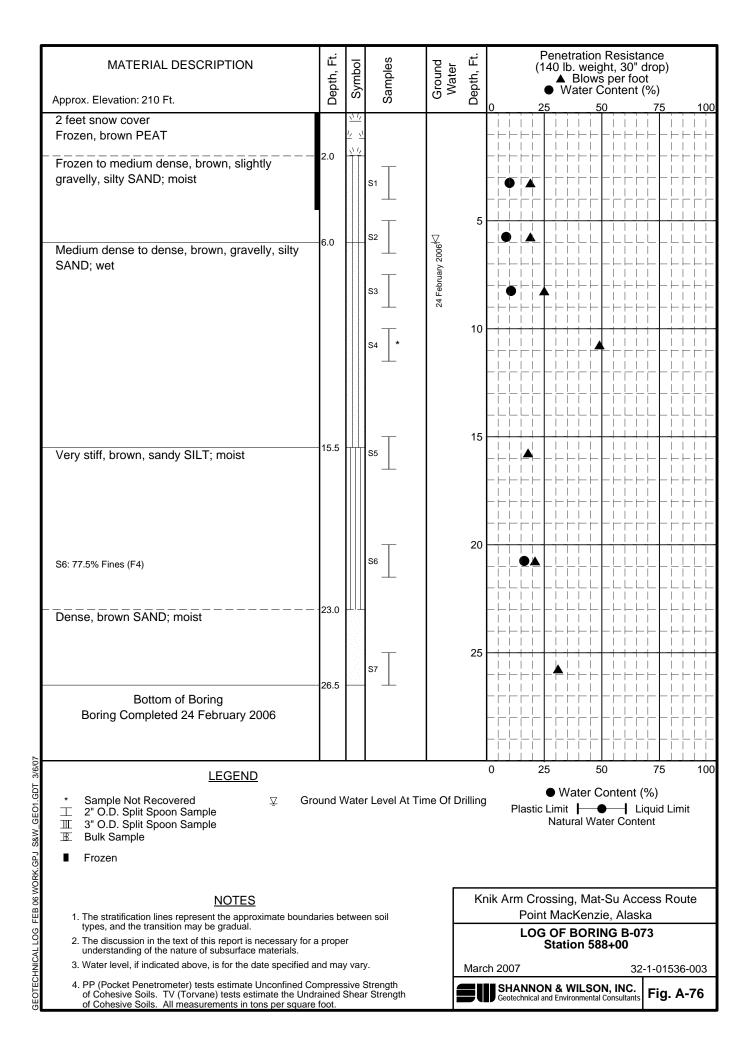


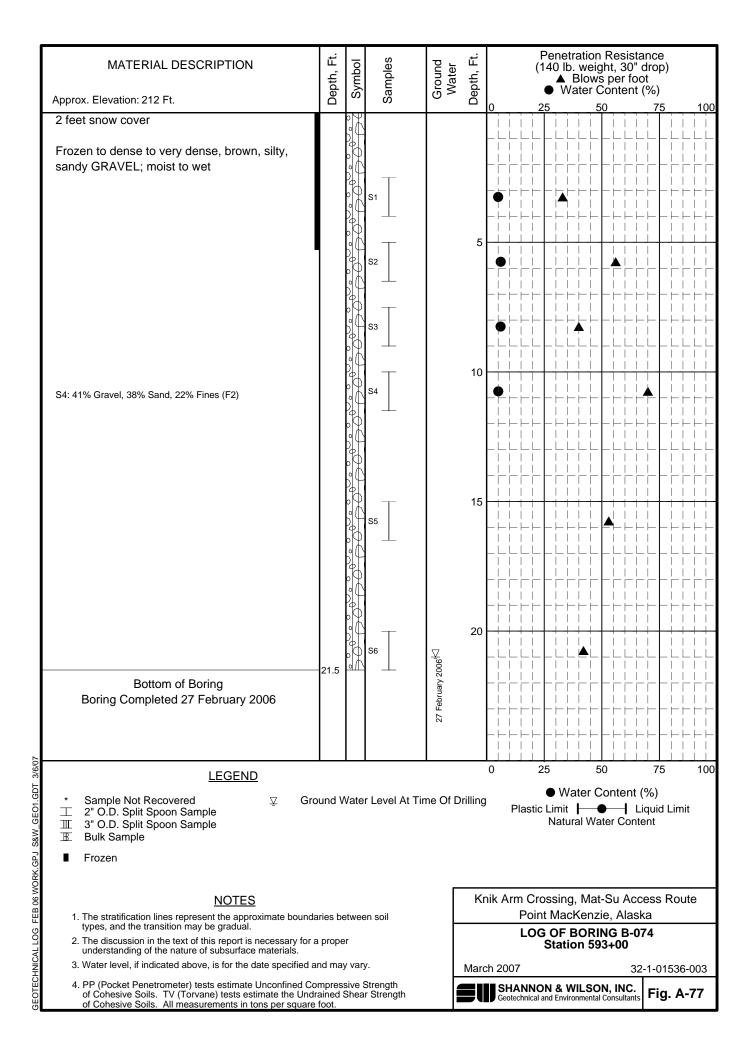


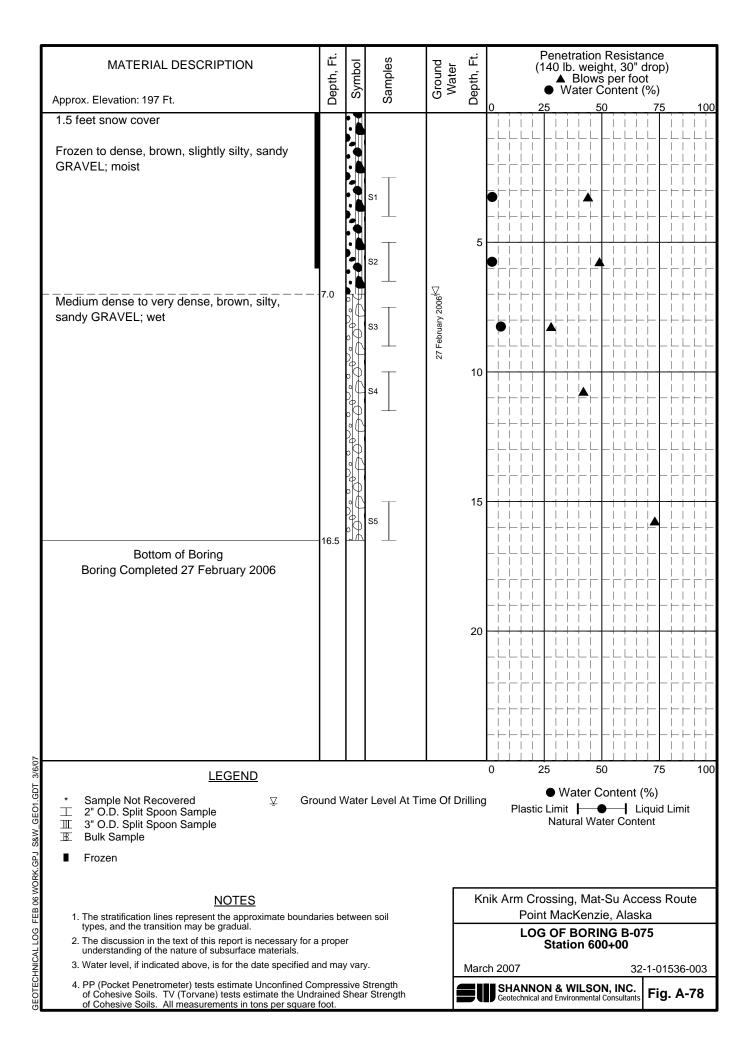


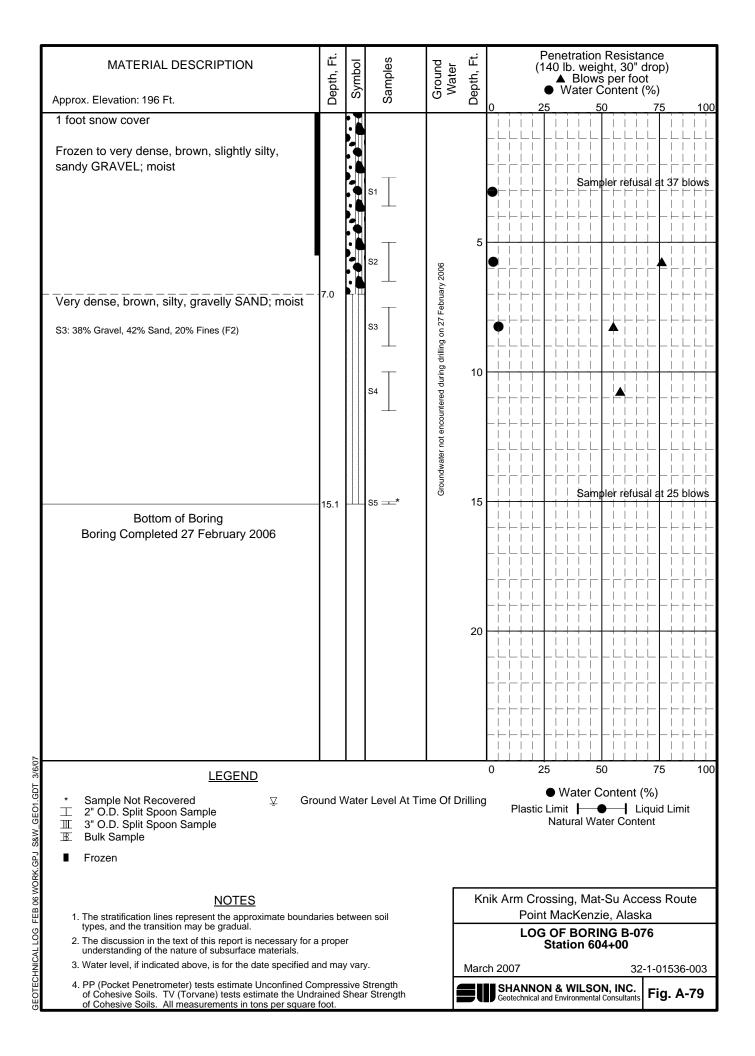


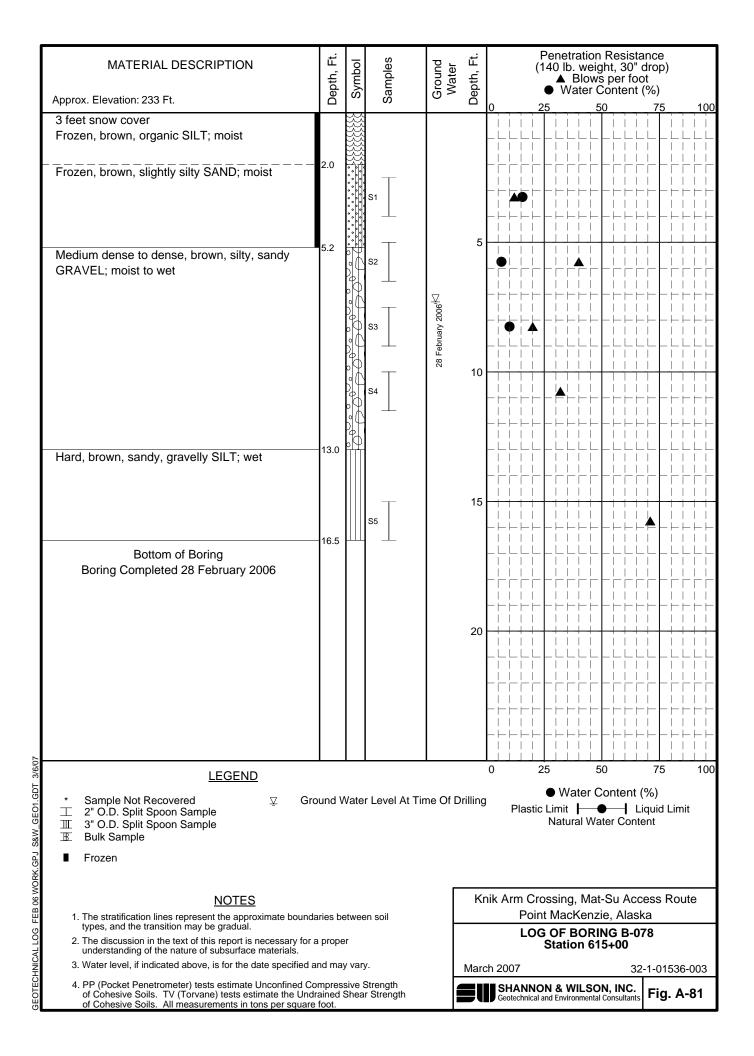


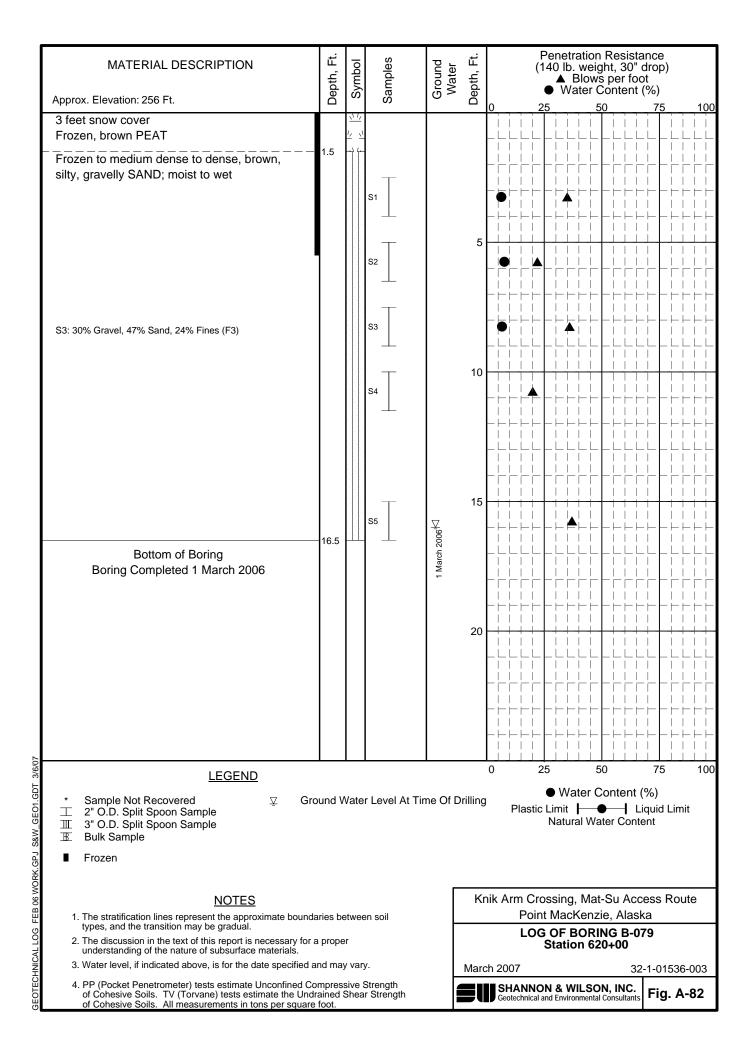

MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Penetration Resistance (140 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)				
Approx. Elevation: 244 Ft.	ă	5	ő	0-	ď	0 <u>25</u> <u>50</u> <u>75</u> <u>100</u>				
2.5 feet snow cover Frozen, brown PEAT Frozen to medium dense, brown, silty SAND, trace of gravel; moist	1.0		S1							
Medium dense to dense, brown, gravelly, silty SAND; moist to wet	4.5		s2 * s3 *	22 February 2006 ¹	5					
S4: 18% Gravel, 49% Sand, 33% Fines (F3)			S4		15					
Bottom of Boring Boring Completed 22 February 2006	16.5				20					
<u>LEGEND</u>						0 25 50 75 100				
 * Sample Not Recovered 2" O.D. Split Spoon Sample 3" O.D. Split Spoon Sample Bulk Sample ■ Frozen 										
NOTES Knik Arm Crossing, Mat-Su Access Route 1. The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. Point MacKenzie, Alaska 2. The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials. LOG OF BORING B-068 Station 565+00 3. Water level, if indicated above, is for the date specified and may vary. March 2007 22.1 01526 002										
 PP (Pocket Penetrometer) tests estimate Unconfined Compressive Strength of Cohesive Soils. TV (Torvane) tests estimate the Undrained Shear Strength of Cohesive Soils. All measurements in tons per square foot. 						March 2007 32-1-01536-003 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Fig. A-71				

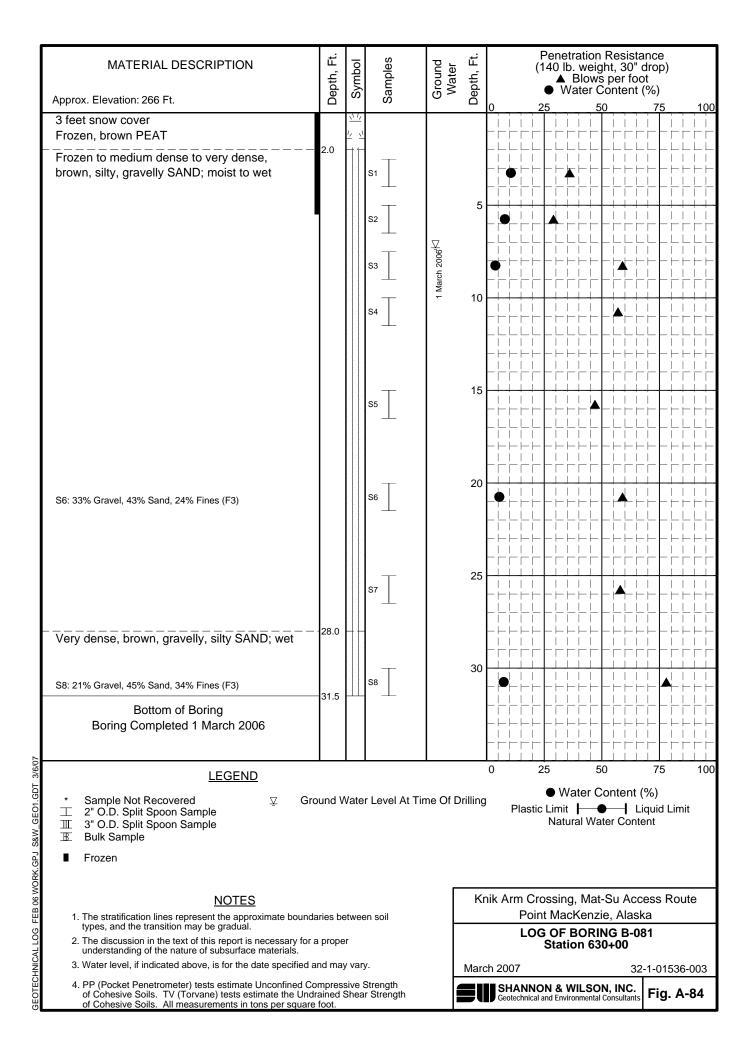


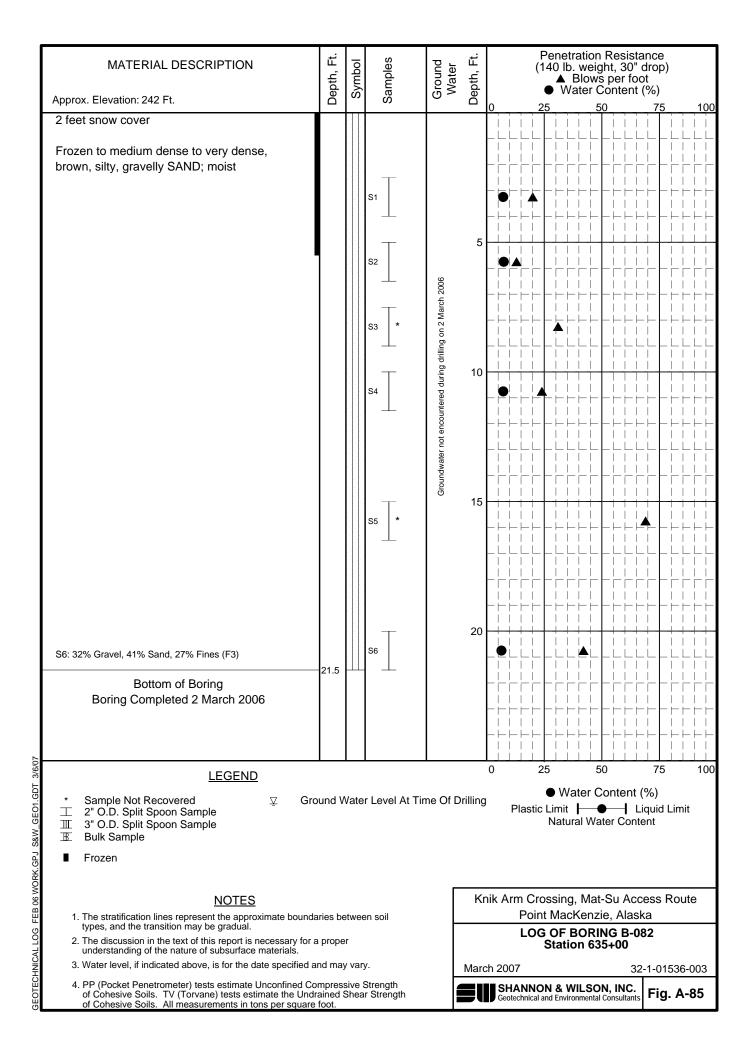


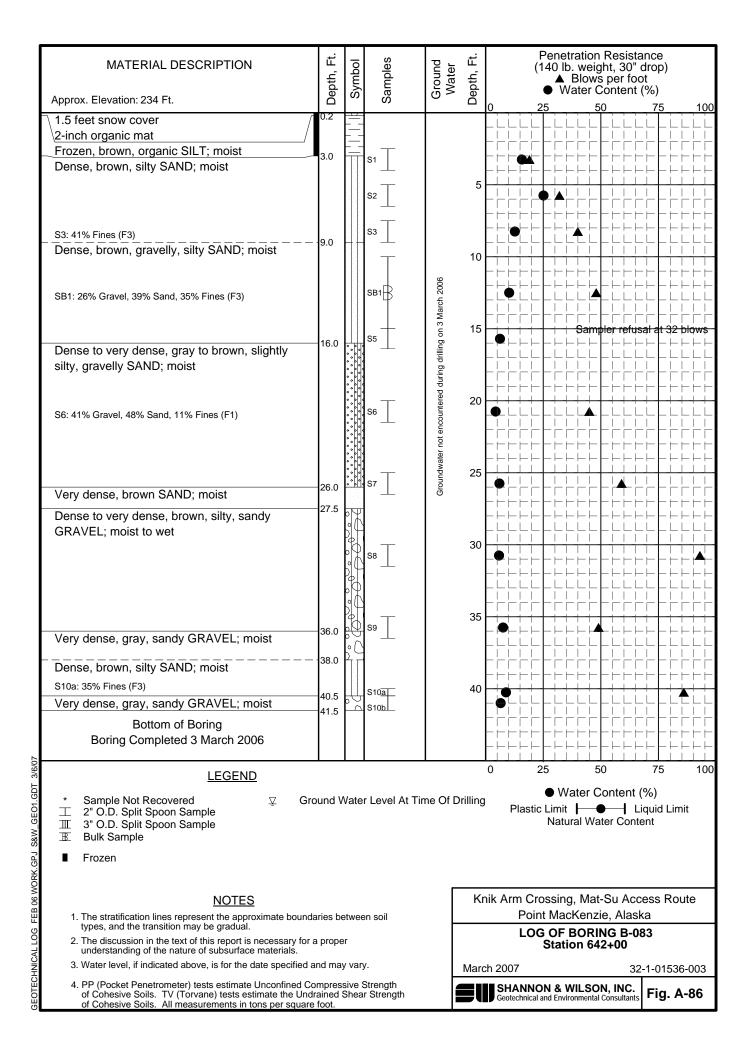


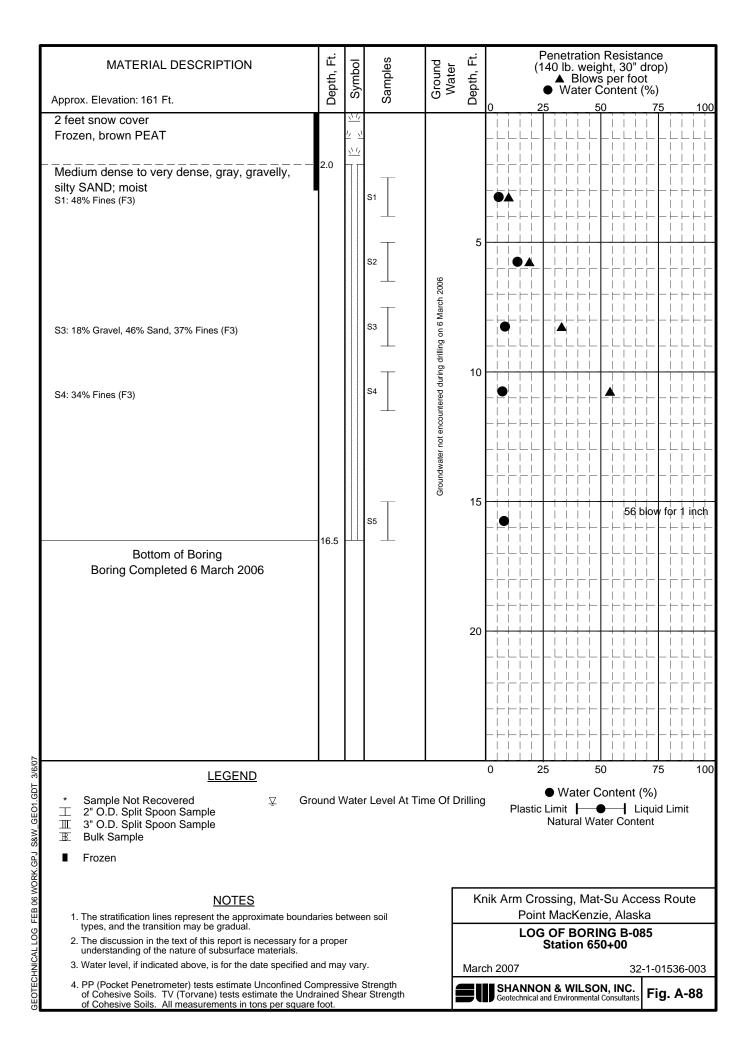


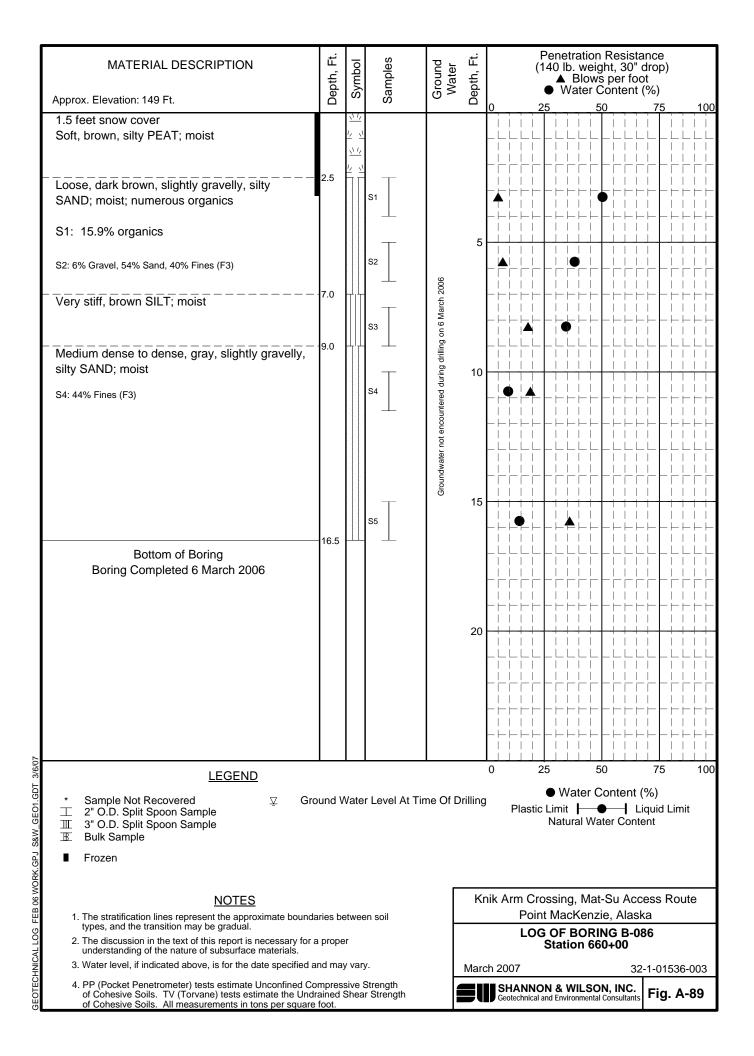


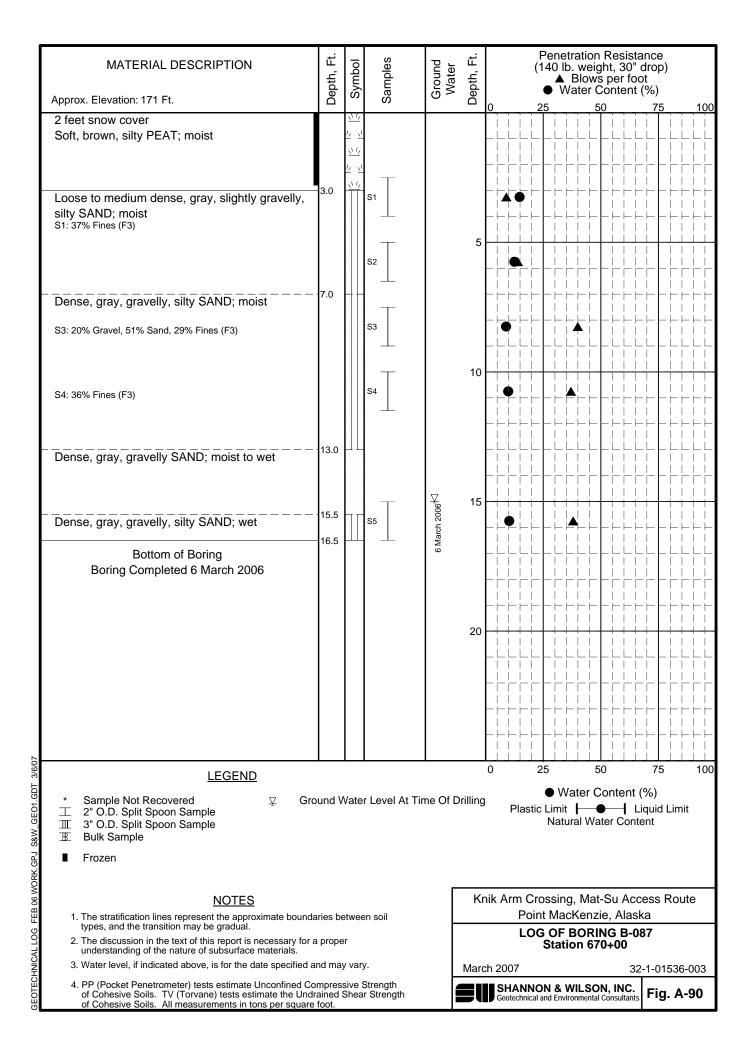


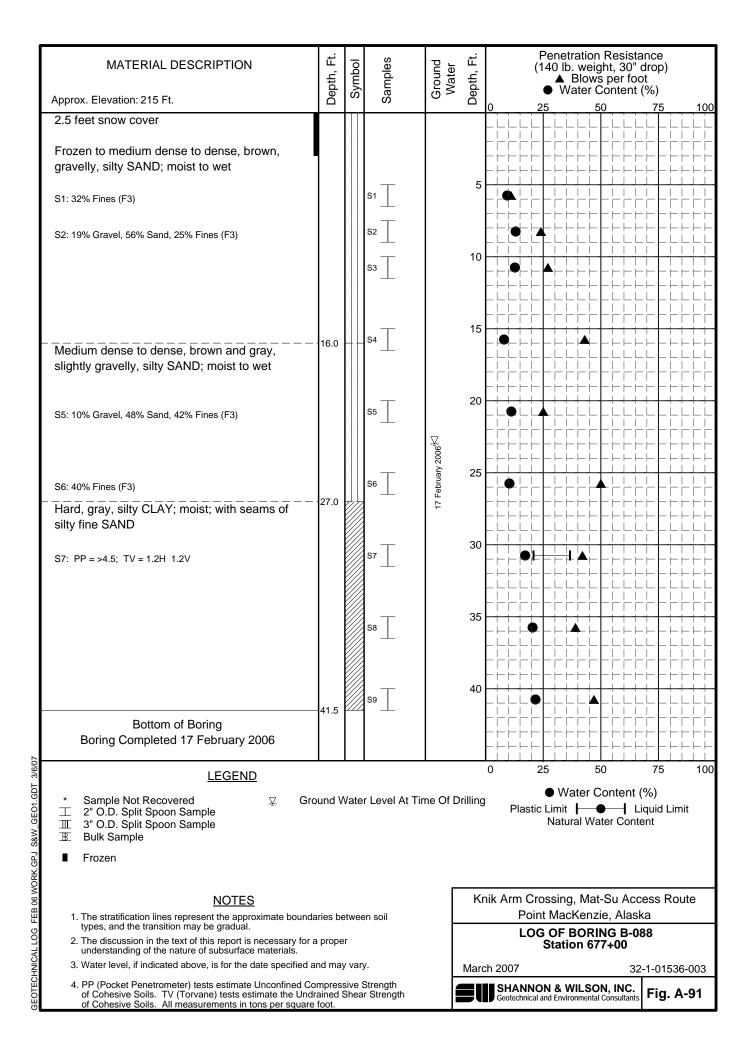

MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Penetration Resistance (140 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)				
Approx. Elevation: 258 Ft.	ă		ű	0.	ă	0 25 50 75 100				
3 feet snow cover Frozen, brown, silty, gravelly SAND; moist			S1							
Frozen to medium dense to dense, brown, silty, sandy GRAVEL; moist	- 4.5		s2 I		5					
S3: 40% Gravel, 36% Sand, 24% Fines (F2)			s3	90		• • • • • • • • • • • • • • • • • • •				
Drilling action suggests boulders or cobbles from 20 to 35 feet bgs			S4 S5 S6 S7 S8	Groundwater not encountered during drilling on 27 February 2006	10 15 20 25 30	Sampler relusal at 30 plows Sampler relusal at 65 plows Sampler relusal at 60 plows Sampler relusal at 50 plows				
Dense, brown, gravelly, silty SAND; moist	- 33.0				35					
S9: 25% Gravel, 41% Sand, 34% Fines (F3) Bottom of Boring Boring Completed 27 February 2006			S9		00					
200 <u>7</u>										
LEGEND 0 25 50 75 100 * Sample Not Recovered ♀ Ground Water Level At Time Of Drilling ● Water Content (%) □ 2" O.D. Split Spoon Sample ♀ Ground Water Level At Time Of Drilling ● Water Content (%) □ 3" O.D. Split Spoon Sample ♀ Hastic Limit ► ↓ ↓ □ Bulk Sample ₽ ₽ ₽ ₽ ₽ ■ Frozen ₽ ₽ ₽ ₽ ₽										
types, and the transition may be gradual.	 The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. The discussion in the text of this report is necessary for a proper 									
3. Water level, if indicated above, is for the date specified and may vary. March 2007 32-1-1										
 4. PP (Pocket Penetrometer) tests estimate Unconfined of Cohesive Soils. TV (Torvane) tests estimate the Ur of Cohesive Soils. All measurements in tons per squa 		Geotechnical and Environmental Consultants Fig. A-80								

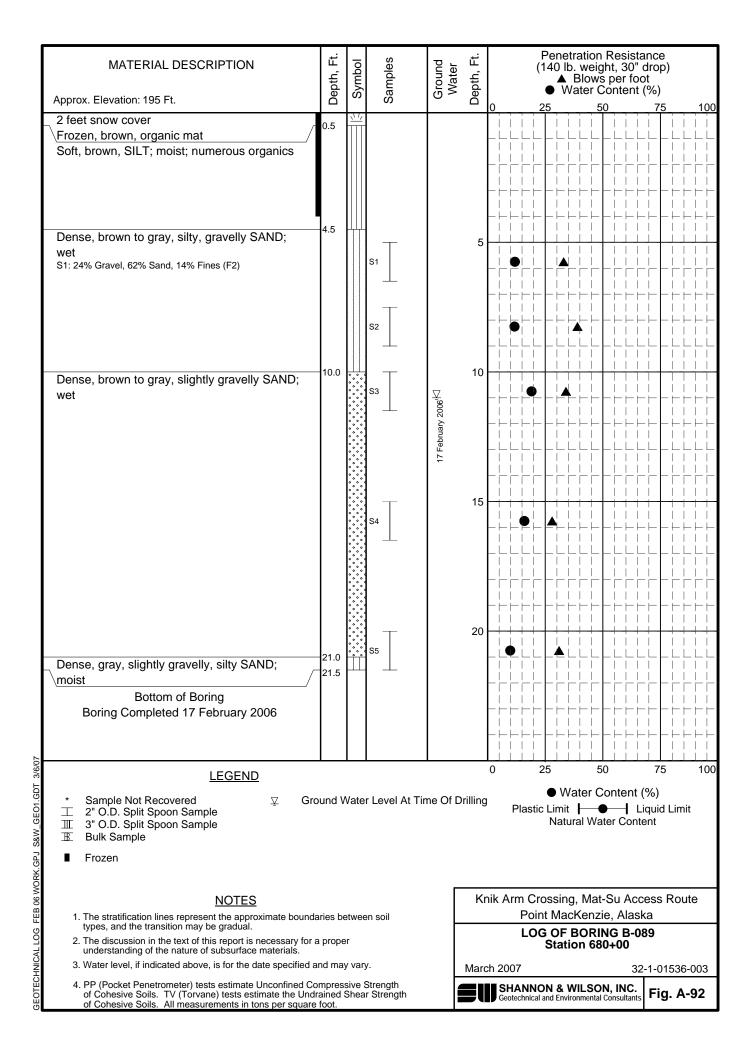


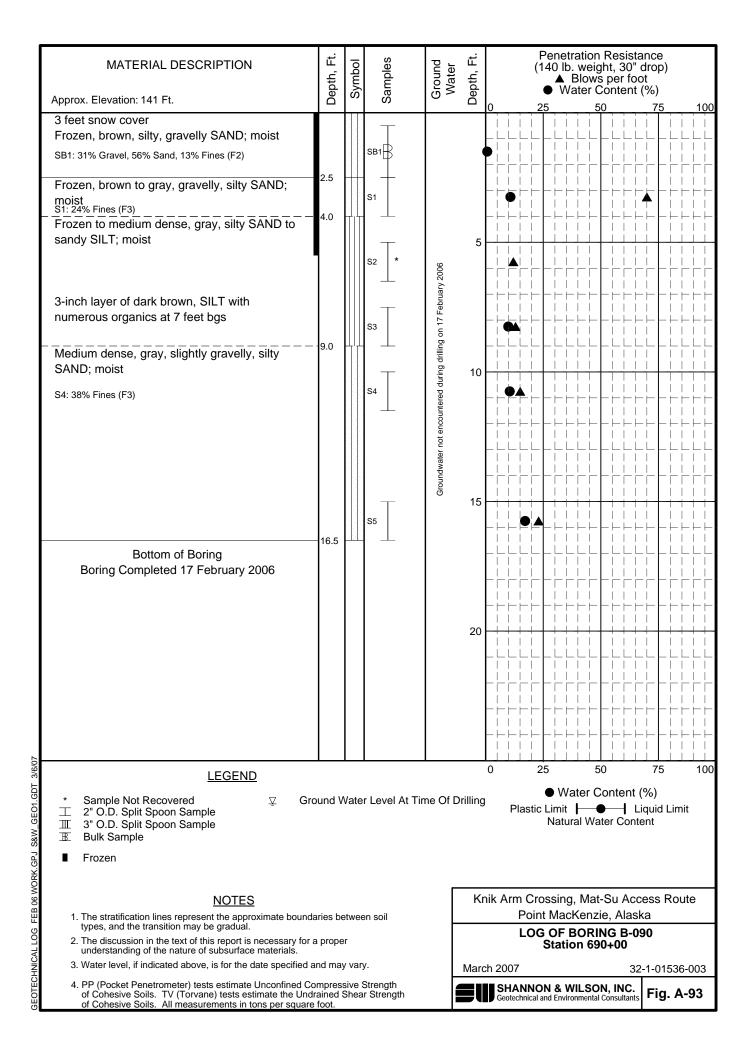

ſ		Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Penetration Resistance (140 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)			
┢	Approx. Elevation: 267 Ft. 2.5 feet snow cover			٥ ٥	<u> </u>		0 25 50 75 100			
	Frozen to medium dense to very dense, brown, silty, gravelly SAND; moist			S1 S2		5				
	Drilling action suggests boulders or cobbles from 7.5 to 26.5 feet bgs			s3 *	March 2006					
				S4	Groundwater not encountered during drilling on 1 March 2006	10				
				S5	Groundwater not encou	15				
				S6		20				
	S7: 31% Gravel, 45% Sand, 24% Fines (F3)	-26.5		s7		25				
2	Bottom of Boring Boring Completed 1 March 2006									
3/6/0	LEGEND						0 25 50 75 100			
LEGEND 0 25 50 75 * Sample Not Recovered ✓ Ground Water Level At Time Of Drilling ● Water Content (%) □ 2" O.D. Split Spoon Sample ● Liquid Limi □ 3" O.D. Split Spoon Sample ● Liquid Limi □ 3" O.D. Split Spoon Sample ● Liquid Limi □ Bulk Sample ● Frozen 1. The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. Knik Arm Crossing, Mat-Su Access Rou 2. The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials. LOG OF BORING B-080 3. Water level, if indicated above, is for the date specified and may vary. March 2007 32-1-01536 ● ● ● ● ● ● ● 4. PP (Pocket Penetrometer) tests estimate Unconfined Compressive Strength of Cohesive Soils. TV (Torvare) tests estimate the Undrained Shear Strength of Cohesive Soils. All measurements in tons per square foot. ●										
B 06 W	NOTES	Knik Arm Crossing, Mat-Su Access Route								
ICAL LOG FEE	 The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials. Water level, if indicated above, is for the date specified and may vary. 						Point MacKenzie, Alaska LOG OF BORING B-080 Station 625+00			
TECHN	4. PP (Pocket Penetrometer) tests estimate Unconfined Co	ŀ	March 2007 32-1-01536-003							
<u>O</u> EO	of Cohesive Soils. TV (Torvane) tests estimate the Undr of Cohesive Soils. All measurements in tons per square	ained \$ foot.	Shea	r Strength	l		SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Fig. A-83			

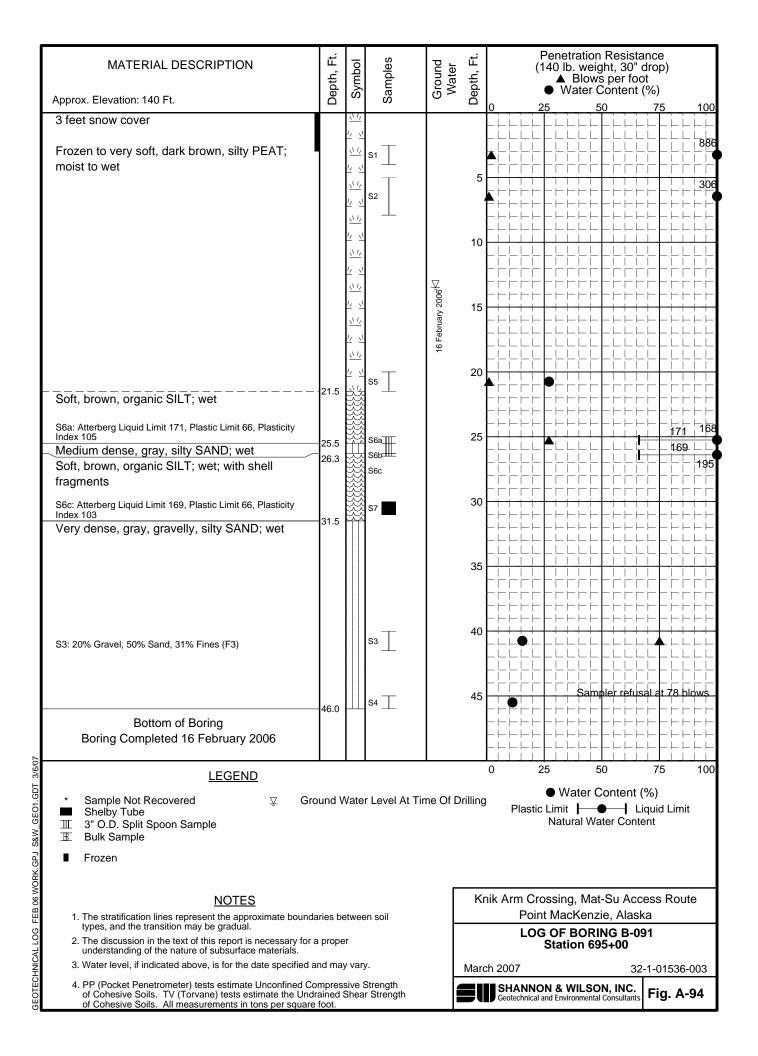


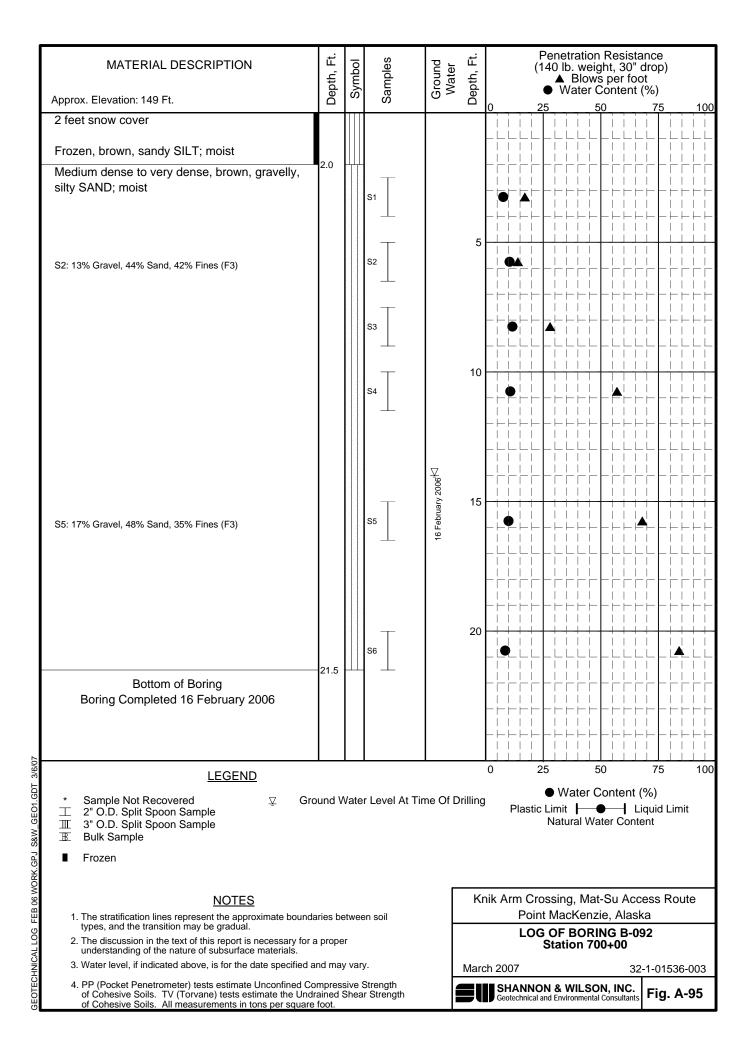


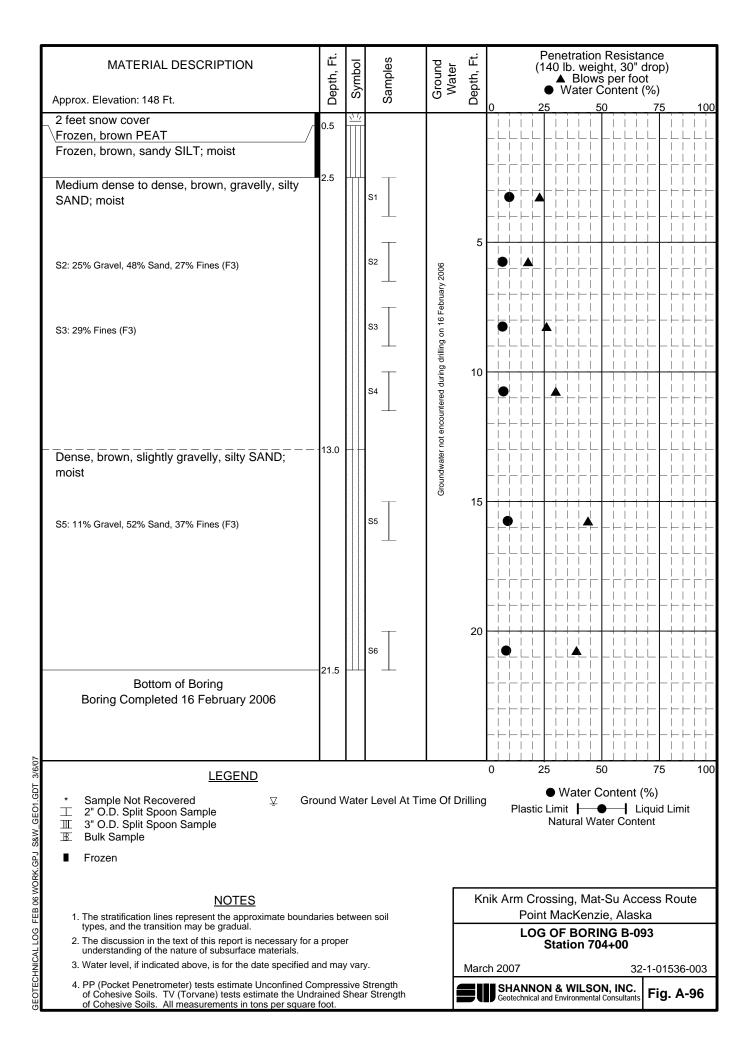


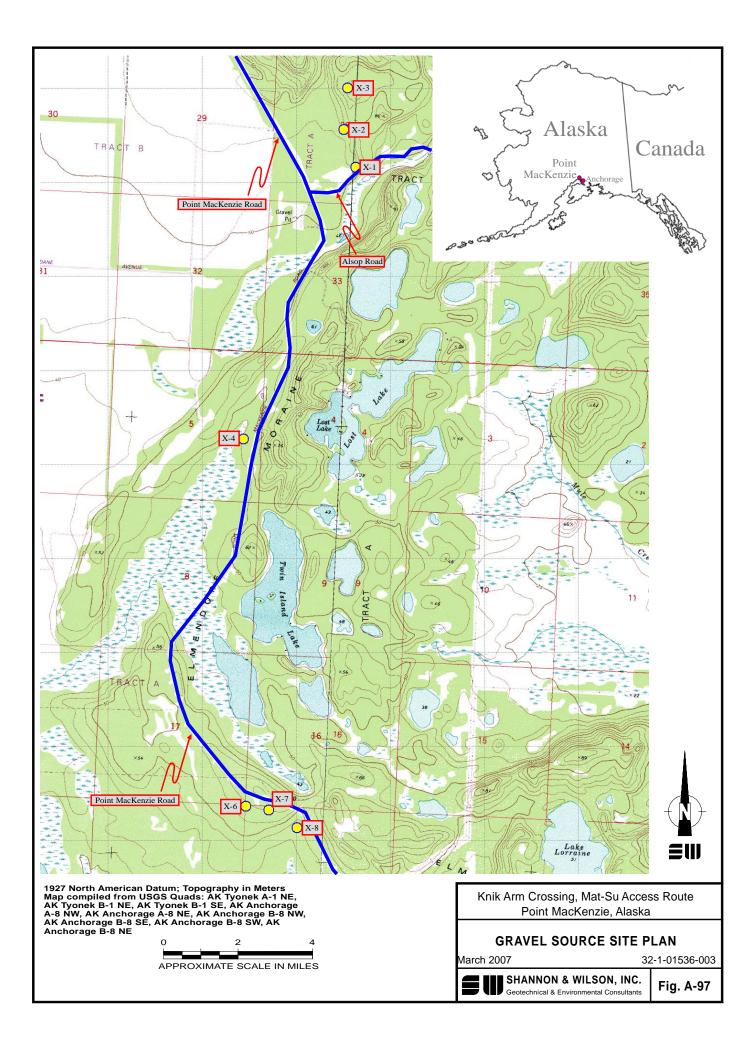

MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Penetration Resistance (140 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)				
Approx. Elevation: 220 Ft.	ă		ő	0	ă	0 25 50 75 100				
2 feet snow cover Frozen, brown PEAT Dense, brown, silty GRAVEL; moist S1: 31.5% Fines (F3) Dense, gray, slightly silty, gravelly SAND; moist	2.0 -3.5		S1		5					
S2: 43% Gravel, 49% Sand, 8% Fines (F2)			S2		Ŭ					
Medium dense, brown, silty GRAVEL; moist	7.0		s3			╴╴╴╴╴ ╋╴╴╴╴ ╴				
Dense, brown, gravelly, silty SAND; moist	-9.0		s4		10					
S5: 26% Gravel, 44% Sand, 30% Fines (F3)			S5		15					
			S6		20					
S7: 25% Gravel, 43% Sand, 31% Fines (F3)			s7		25					
Dense, brown, gravelly, sandy SILT; moist	28.0									
Medium dense, brown, slightly silty SAND; moist to wet Very dense, brown, silty, gravelly SAND; moist to wet	- 30.5 - 31.5		S8		30					
S9: 32% Gravel, 43% Sand, 24% Fines (F3)			S9		35					
Dense, brown, gravelly SAND; wet	40.5		S10	<u>∑</u>	40					
Bottom of Boring Boring Completed 3 March 2006	-41.5			3 March 2006 ^I ⊠						
EGEND						0 25 50 75 100				
LEGEND 0 25 50 75 100 * Sample Not Recovered ✓ Ground Water Level At Time Of Drilling ● Water Content (%) 2" O.D. Split Spoon Sample Image: Spoon Sample Liquid Limit 3" O.D. Split Spoon Sample ■ Liquid Limit Bulk Sample ■ Frozen Notes Image: Trope split Spoon Sample ■ Notes Natural Water Content Image: Trope split Spoon Sample ■ Notes Natural Water Content Image: Trope split Spoon Sample ■ Notes Natural Water Content Image: Trope split Spoon Sample ■ Notes Natural Water Content Image: Trope split Spoon Sample ■ Natural Water Content Natural Water Content Image: Trope split Spoon Sample ■ ■ Natural Water Content Natural Water Content Image: Trope split Spoon Sample ■ ■ ■ Natural Water Content Natural Water Content Image: Trope split Spoon Sample ■ ■ ■ ■ ■ ■ Image: Trope split Spoon Sample ■ ■ ■ ■ ■ <t< td=""></t<>										
NOTES 1. The stratification lines represent the approximate boundary	Γ	Knik Arm Crossing, Mat-Su Access Route Point MacKenzie, Alaska								
 types, and the transition may be gradual. The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials. Water level, if indicated above, is for the date specified and may vary. PP (Pocket Penetrometer) tests estimate Unconfined Compressive Strength 						LOG OF BORING B-084 Station 646+00				
						March 2007 32-1-01536-003				
 4. PP (Pocket Penetrometer) tests estimate Uncontined Cc of Cohesive Soils. TV (Torvane) tests estimate the Und of Cohesive Soils. All measurements in tons per square 		Geotechnical and Environmental Consultants Fig. A-87								

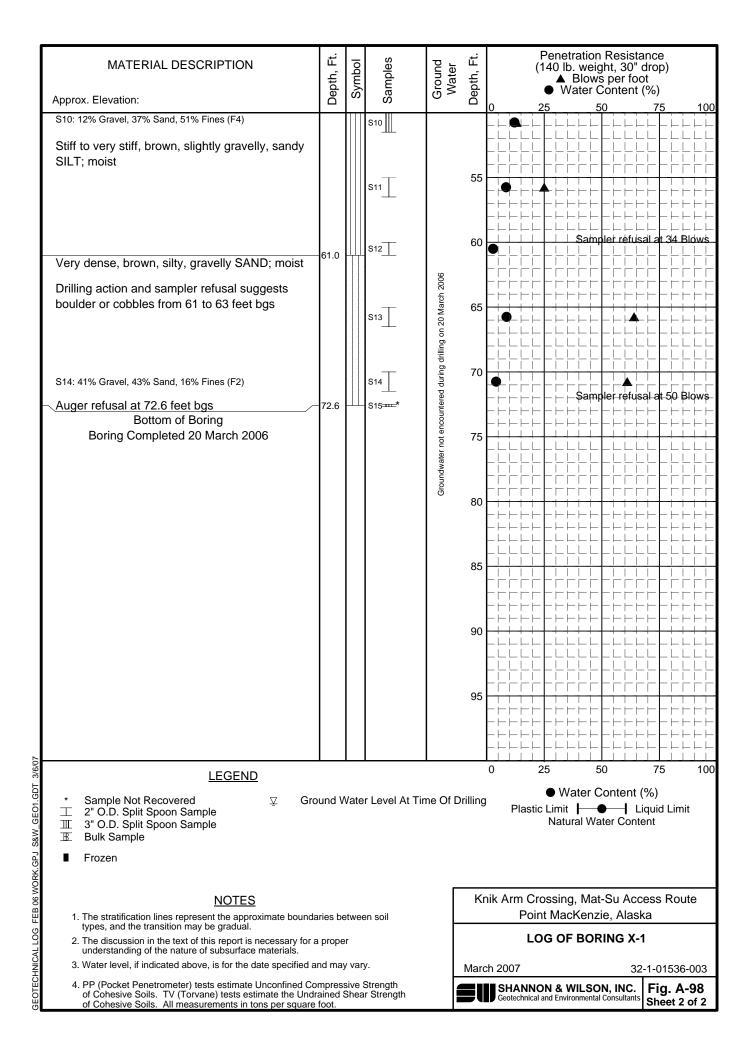


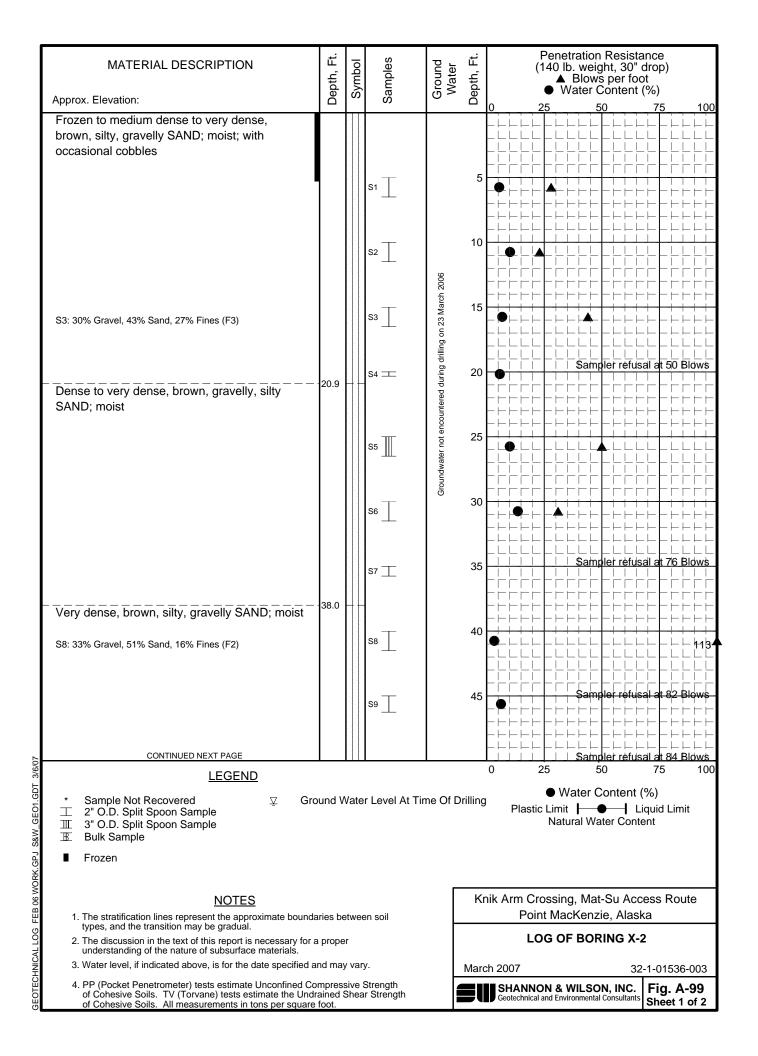


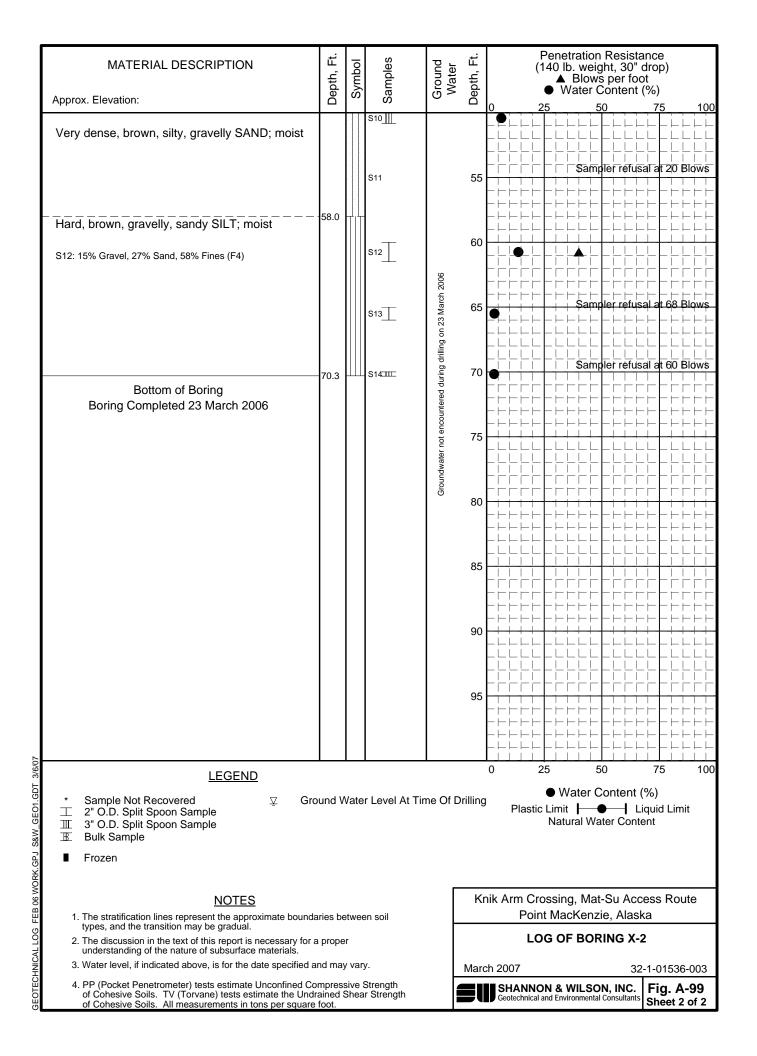


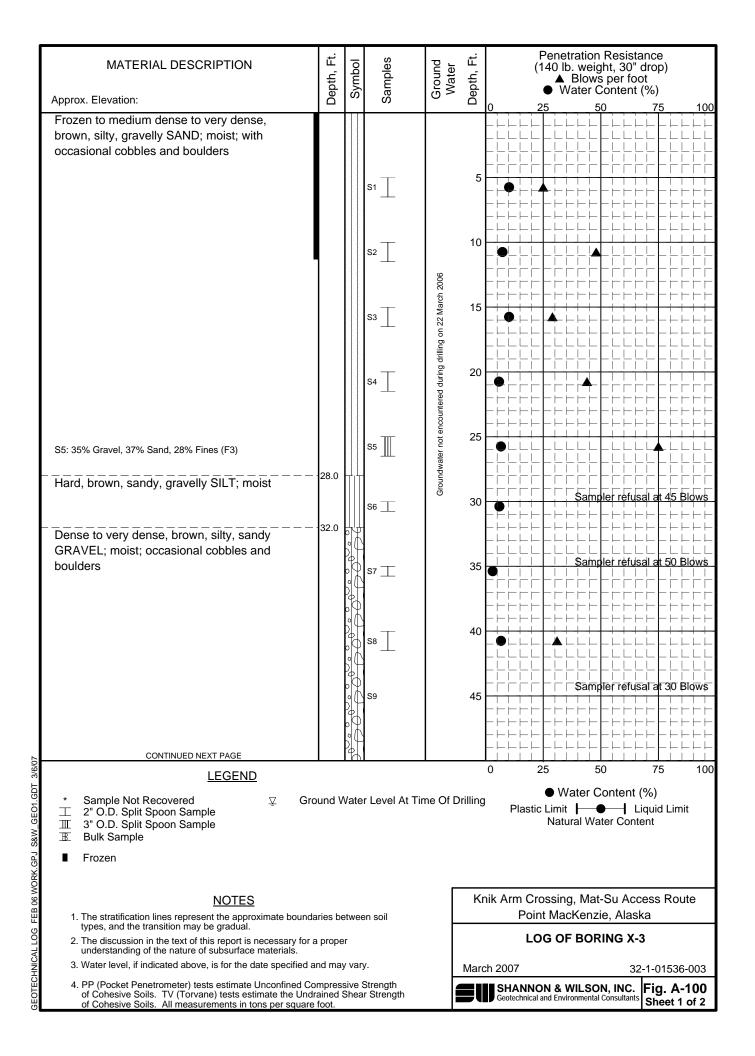


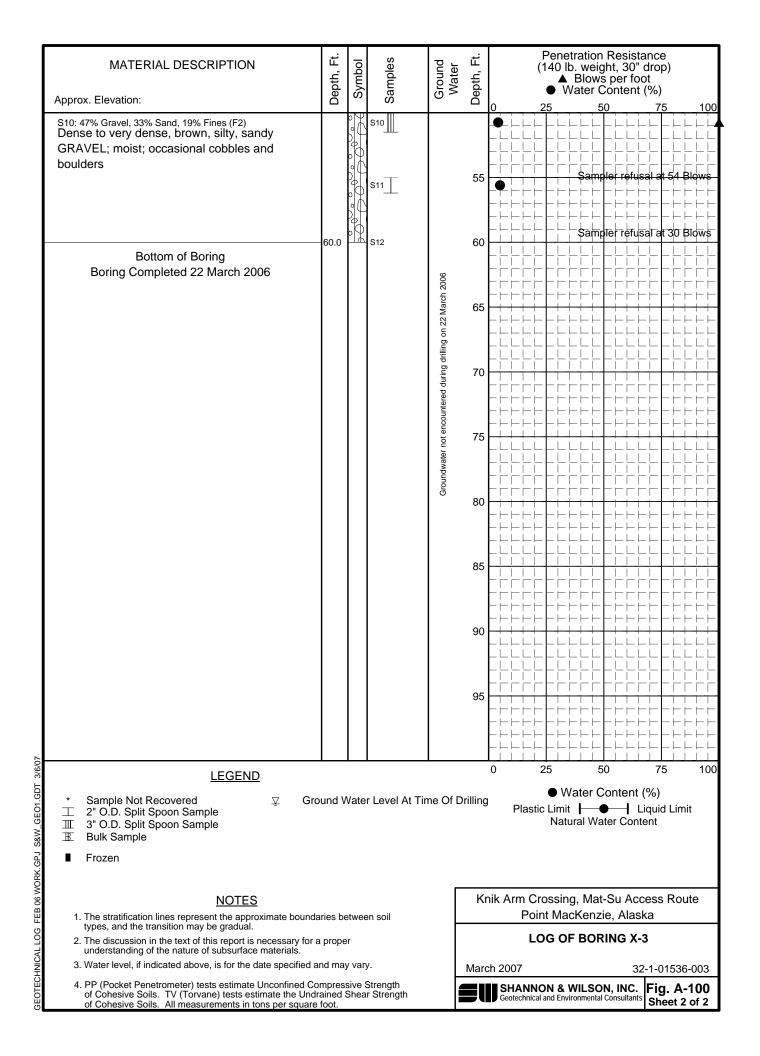


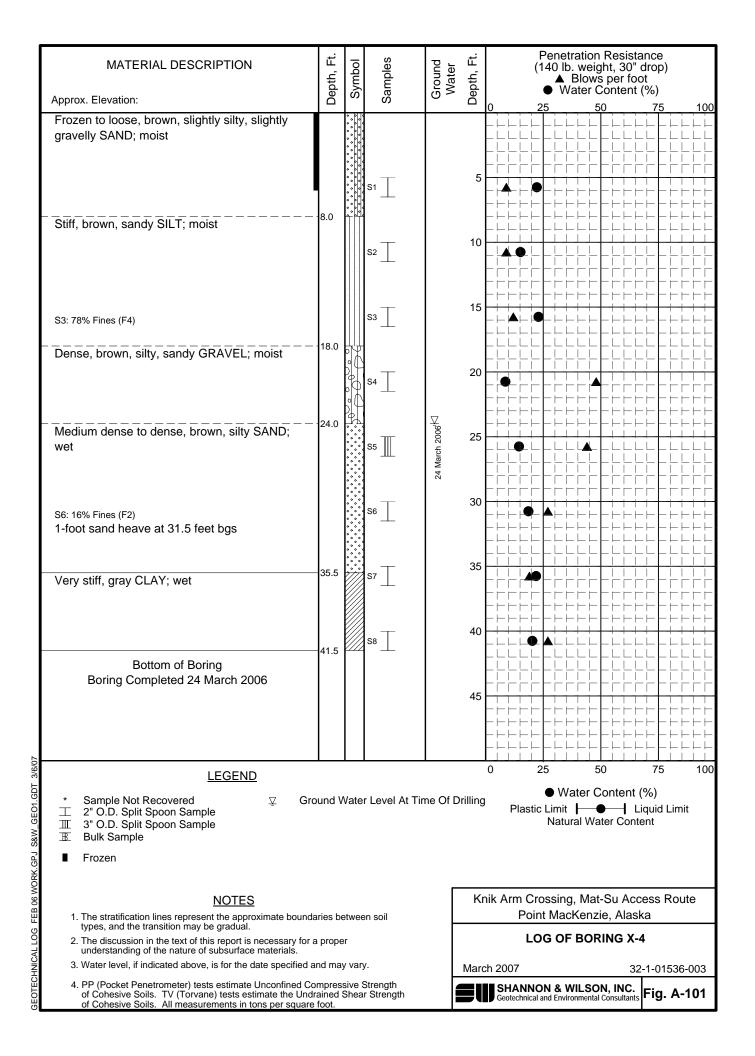


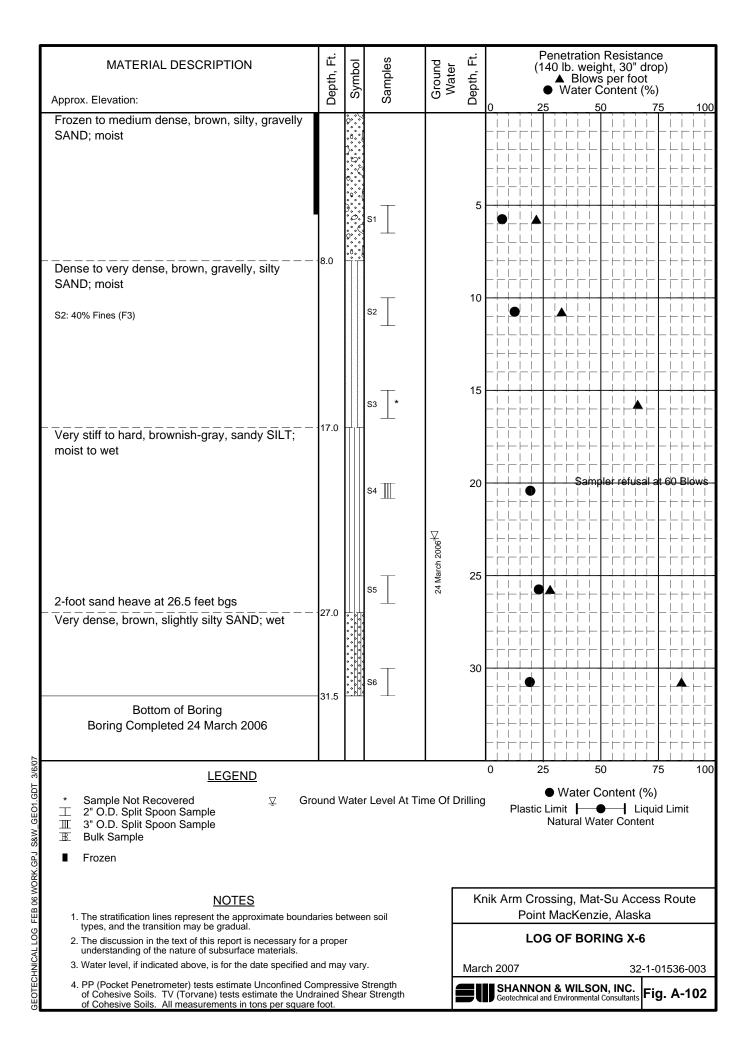


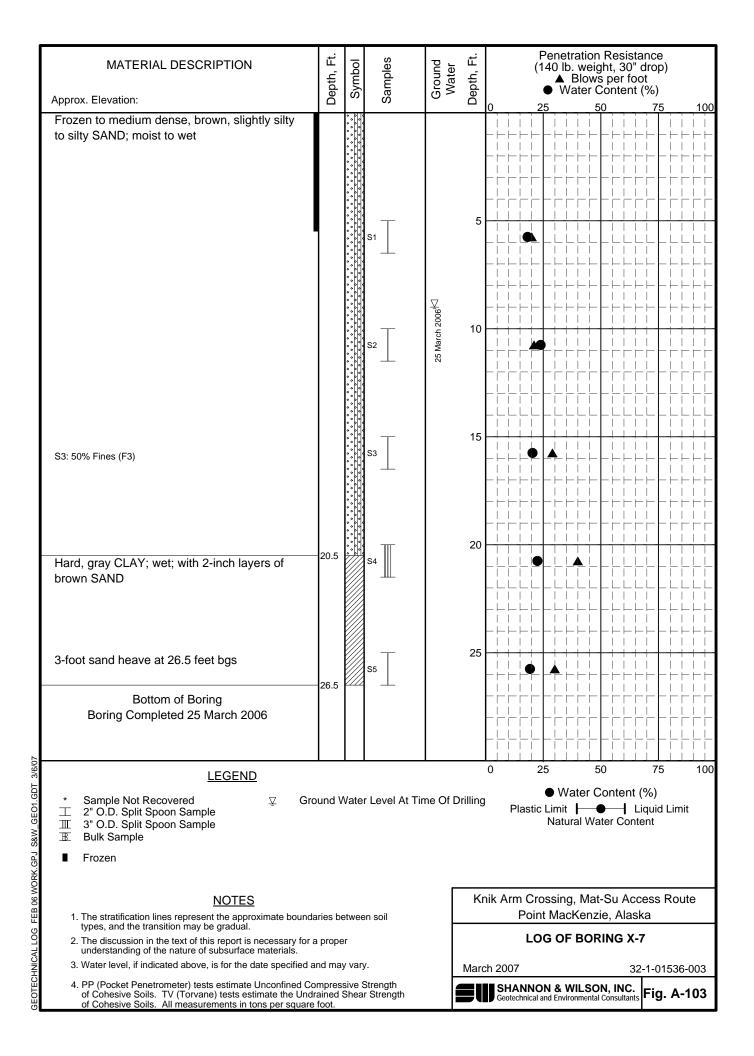


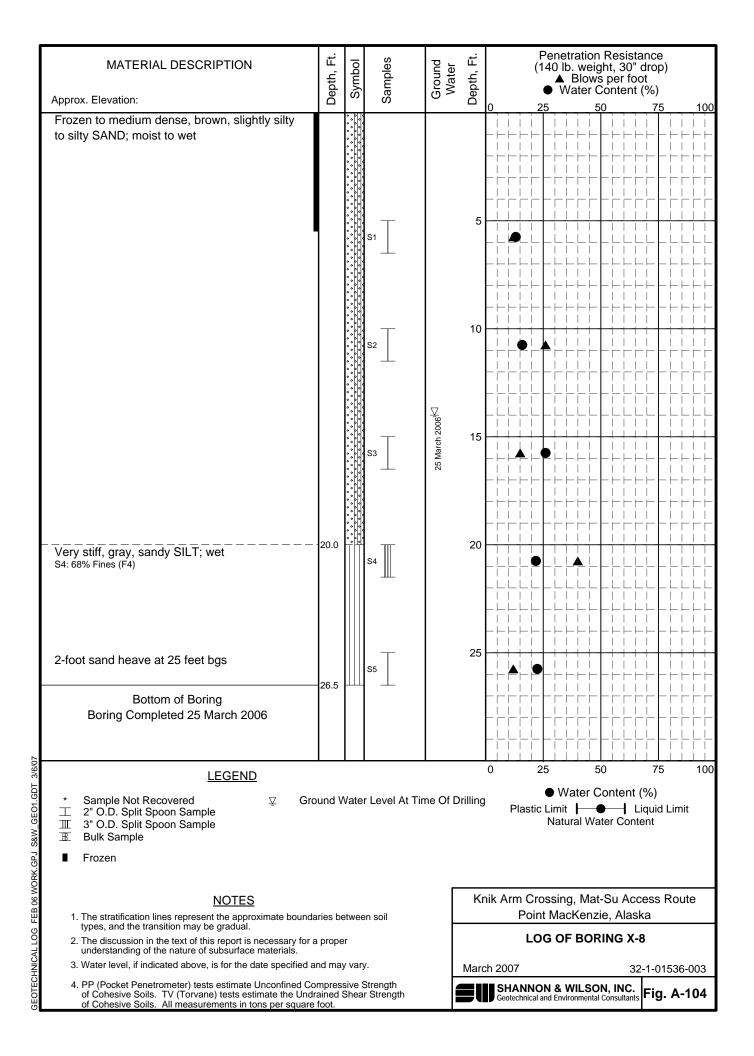



MATERIAL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Penetration Resistance (140 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)
Approx. Elevation:	ă	0,	Ň	0.	ă	0 <u>25 50 75 100</u>
Frozen to medium dense, brown, silty, gravelly SAND; moist			S1		5	
S2: 32% Gravel, 45% Sand, 23% Fines (F3)	-14.0		S2	2006 I	10	
S3: 26% Gravel, 42% Sand, 32% Fines (F3)	14.0		s3	ing on 20 March	15	$\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
Medium dense to very dense, brown, gravelly, silty SAND; moist			S4	Groundwater not encountered during drilling on 20 March 2006	20	
				unooue		Sampler refusal at 20 Blows
Drilling action and sampler refusal suggests boulder or cobbles at 25 feet bgs	27.0		S5 *	oundwater not e	25	
			S6	Grc	30	
			S7		35	
Very dense, brown SAND; moist	-41.0	•••	S8		40	
Medium dense, brown, gravelly, silty SAND; moist	-45.2		s9		45	
CONTINUED NEXT PAGE						
LEGEND						0 25 50 75 100
LEGEND * Sample Not Recovered ♀ Gro □ 2" O.D. Split Spoon Sample □ 3" O.D. Split Spoon Sample □ 3" O.D. Split Spoon Sample □ Bulk Sample □ Frozen NOTES 1. The stratification lines represent the approximate boundatypes, and the transition may be gradual. 2. The discussion in the text of this report is necessary for a understanding of the nature of subsurface materials. 3. Water level, if indicated above, is for the date specified at 4. PP (Pocket Penetrometer) tests estimate Unconfined Coord Cohesive Soils. TV (Torvane) tests estimate the Undrate of Cohesive Soils. All measurements in tons per square	ound V	Vate	r Level At Tir	ne Of Di	rilling	Water Content (%) Plastic Limit Autural Water Content
NOTES 1. The stratification lines represent the approximate bounda	NOTES Knik 1. The stratification lines represent the approximate boundaries between soil					
 types, and the transition may be gradual. 2. The discussion in the text of this report is necessary for a understanding of the nature of subsurface materials. 3. Water level, if indicated above, is for the date specified and the subsurface materials. 			y.		Mar	LOG OF BORING X-1
 4. PP (Pocket Penetrometer) tests estimate Unconfined Co of Cohesive Soils. TV (Torvane) tests estimate the Undr of Cohesive Soils. All measurements in tons per square 	mpress ained \$	sive	Strength			SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 1 of 2









APPENDIX B

LABORATORY TEST PROCEDURES AND RESULTS

TABLE OF CONTENTS

		Page
B.1	Classification Tests	B-1

LIST OF TABLES

Table B-1	Soil Classification Legend (USCS)
Table B-2	Soils Testing Report
Table B-3	Gravel Source Soils Testing Report

LIST OF FIGURES

Figure B-1	Grain Size Classification
Figure B-2	Gravel Source Grain Size Classification
Figure B-3	Atterberg Limits Results

APPENDIX B LABORATORY TEST PROCEDURES AND RESULTS

Laboratory tests were performed on selected soil samples from the road alignment borings as well as the gravel source investigations to verify visual classifications and to estimate engineering characteristics pertinent to the design of the proposed road and associated improvements. The following sections discuss each of the tests performed for the various properties required.

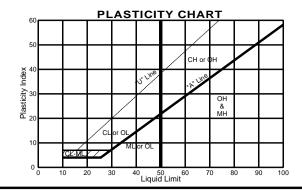
B.1 Classification Tests

Soil samples shipped to our laboratory were classified in the laboratory and their descriptions were checked against those in the field. These descriptions were used in the preparation of our final logs, Figures A-4 through A-96 and Figures A-98 through A-104 in Appendix A. The Unified Soil Classification System (ASTM D-2488 & 2487-90) was used to classify soils and the criteria for the Unified Soil Classification System is included as Table B-1. A soil testing summary is presented in Table B-2 for the road alignment and Table B-3 for the gravel source. Note that not all Pocket Penetrometer readings are included in the soil testing summary. Samples that were tested in the laboratory include the field Pocket Penetrometer reading on Tables B-2 and B-3. If a sample was not tested in the laboratory, the results are shown on the boring logs in Appendix A.

Water Content Estimations

Following the visual classification of selected soil samples, a portion of the material was weighted and oven dried to estimate the natural water content of the soil. The water contents, generally based on ASTM D-2216, are tabulated in Appendix B as Table B-2, Table B-3 and are presented graphically on the boring logs in Appendix A.

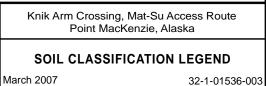
Grain Size Analyses


Grain size classification tests were conducted on samples from our borings to confirm the field classification of soils encountered in our explorations. The gradation testing generally followed the mechanical sieve procedures described in ASTM D-422. The grain size testing results are presented in Appendix B as Figures B-1 and B-2, presented in the soils testing report in Table B-2, and summarized on the boring logs as percent gravel, percent sand, and percent fines.

Atterberg Limits

Atterberg limits were estimated for several samples of the native fine-grained soils encountered in the explorations. The test was performed in general accordance with ASTM D-4318. This analysis provides an estimate of the plasticity characteristics of the silt or clay. The results of this test are summarized in Figure B-3 of Appendix B, on the soils testing report in Table B-2, and on the boring logs presented in Appendix A.

Criteria for A	GROUP NAM ssigning Group Name			Soil Classification Group Symbol with Generalized Group Descriptions	
	GRAVELS	Clean GRAVELS		GW	Well-graded Gravels
	50% or more of coarse fraction	Less than 5% fines		GP	Poorly-graded Gravels
COARSE-GRAINED	retained on No. 4 sieve	GRAVELS with fines		GM	Gravel & Silt Mixtures
SOILS more than 50%	Sleve	More than 12% fines		GC	Gravel & Clay Mixtures
retained on No. 200 sieve		Clean SANDS		SW	Well-graded Sands
No. 200 sieve	SANDS More than 50% of coarse fraction passes No. 4 sieve	Less than 5% fines		SP	Poorly-graded Sands
		SANDS with fines		SM	Sand & Silt Mixtures
		More than 12% fines		SC	Sand & Clay Mixtures
		INORGANIC		ML	Non-plastic & Low- plasticity Silts
	SILTS AND CLAYS			CL	Low-plasticity Clays
FINE-GRAINED SOILS 50% or more	Liquid limit 50% or less	ORGANIC		OL	Non-plastic and Low- plasticity Organic Clays Non-plastic and Low- plasticity Organic Silts
passes the No. 200 sieve		INORGANIC			High-plasticity Clays
	SILTS AND CLAYS	INORGANIC		ΜН	High-plasticity Silts
	Liquid limit greater than 50%	ORGANIC		он	High-plasticity Organic Clays High-plasticity Organic Silts
HIGHLY ORGANIC SOILS	Primarily organic matter, dark in color, and organic odor			PT	Peat


Organic Content							
Adjective Percent by Volume							
Occasional	0-1						
Scattered	1-10						
Numerous	10-30						
Organic	30-50, minor constituent						
Peat	50-100, MAJOR constituent						

Descriptive Terminology Denoting Component Proportions

Description	Range of Proportion
Add the adjective "slightly"	5 - 12%
Add soil adjective ^(a)	12 - 50%
Major proportion in upper case, (e.g., SAND)	>50%

Use gravelly, sandy, or silty as appropriate NOTE: The soil descriptions used in the boring logs lists constituents from smallest percentage to largest percentage.

SHANNON & WILSON, INC. Geotechnical & Environmental Consultants Table B-1
--

Knik Arm Bridge, Mat-Su Access Route

Project No.:

Project Name:

32-1-01536-003

Sampled By:

Andrew Lee

Depth			0	2.5	5	0	2.5	5
Test Hole	No.		B-001	B-001	B-001	B-002	B-002	B-002
Field Sam	nple No.		S1	S2	S3	S1	S2	S3
Date Sam	pled		February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006
Lab No.			B-001S1	B-001S2	B-001S3	B-002S1	B-002S2	B-002S3
Percent Passing Sieve Size	2" 5 1.5" 3 1" 2 0.75" 1 0.5" 1 0.375" 9 0.25" 6 #4 4 #8 2 #10 2 #16 1 #30 0 #40 0 #50 0 #100 0	5mm 0mm 7.5mm 5mm 2.5mm .5mm .3mm .36mm .18mm .425mm .425mm .3mm .15mm .075mm	100.0% 99.0% 94.0% 84.0% 76.0% 58.0% 46.0% 37.0% 30.0% 22.0% 17.0% 14.0%					
Organic C % Gravel % Sand % Silt & C Max. Dry Opt. Mois Unconsol Coeff. Of	nit dex Content % Content % Clay Density ture % . Unconfined T Consolidation np. Strength Q	īriaxial Uu Cv	3.5% 42% 45% 14%	2.8%	1.7%	2.9%	2.7%	2.7%

TABLE B-2 Page 1 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

10	0	2.5	5	0	2.5
B-002	B-003	B-003	B-003	B-004	B-004
S5	S1	S2	S3	S1	S2
February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006
B-002S5	B-003S1	B-003S2	B-003S3	B-004S1	B-004S2
100.0% 96.0% 83.0% 72.0% 66.0% 48.0% 38.0% 31.0% 25.0% 18.0% 12.0% 9.0%				100.0% 98.0% 97.0% 89.0% 82.0% 54.0% 37.0% 28.0% 25.0% 18.0% 14.0% 11.0%	
2.6% 52% 39% 9%	2.8%	4.0%	4.2%	2.5% 46% 43% 11%	3.2%
	B-002 S5 February 13, 2006 B-002S5 100.0% 96.0% 83.0% 72.0% 66.0% 48.0% 38.0% 31.0% 25.0% 18.0% 12.0% 9.0%	B-002 B-003 S5 S1 February 13, 2006 February 13, 2006 B-002S5 B-003S1 100.0% B-003S1 96.0% 33.0% 72.0% 66.0% 66.0% 38.0% 31.0% 38.0% 18.0% 12.0% 9.0% 2.8% 2.6% 2.8%	B-002 B-003 B-003 S5 S1 S2 February 13, 2006 February 13, 2006 February 13, 2006 B-002S5 B-003S1 B-003S2 100.0% B-003S1 B-003S2 96.0% Image: Signal Sig	B-002 B-003 B-003 B-003 S2 S3 February 13, 2006 February 13, 2006 February 13, 2006 February 13, 2006 B-003S2 February 13, 2006 B-002S5 B-003S1 B-003S2 February 13, 2006 B-003S3 100.0% B-003S1 B-003S2 February 13, 2006 96.0% B-003S1 B-003S2 B-003S3 72.0% G6.0% Image: Comparison of the second	B-002 B-003 B-003 B-003 S3 B-004 S5 S1 S2 S3 S1 February 13, 2006 B-003S3 B-004S1 B-002S5 B-003S1 B-003S2 B-003S3 B-004S1 B-004S1 100.0% B-003S2 B-003S3 B-004S1 B-003S3 B-004S1 100.0% B-003S1 B-003S2 B-003S3 B-004S1 100.0% B-003S3 B-004S1 B-003S3 B-004S1

TABLE B-2 Page 2 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth	5	0	2.5	10	15	0
Test Hole No.	B-004	B-005	B-005	B-005	B-005	B-006
Field Sample No.	S3	S1	S2	S5	S6	S1
Date Sampled	February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006
Lab No.	B-004S3	B-005S1	B-005S2	B-005S5	B-005S6	B-006S1
3" 75mm 2" 50mm 1.5" 37.5mm 1" 25mm 0.75" 19mm 0.5" 12.5mm 0.375" 9.5mm 0.25" 6.3mm 30.25" 6.3mm 44 4.75mm 9.5ze #8 #10 2mm #16 1.18mm #30 0.6mm #40 0.425mm #50 0.3mm #100 0.15mm #200 0.075mm	100.0% 94.0% 93.0% 81.0% 74.0% 53.0% 39.0% 28.0% 20.0% 15.0% 11.0% 8.0%			100.0% 92.0% 88.0% 77.0% 69.0% 53.0% 40.0% 32.0% 27.0% 17.0% 8.0% 5.0%		
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value	2.1% 47% 45% 8%	3.0%	3.6%	2.2% 47% 48% 5%	1.9%	3.2%

TABLE B-2

Page 3 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Sampled By: Andrew Lee

Depth			2.5	5	0	2.5	5	7.5
Test Hole			B-006	B-006	B-007	B-007	B-007	B-007
Field Sam			S2	S3	S1	S2	S3	S4
Date Sam	pled		February 13, 2006					
Lab No.			B-006S2	B-006S3	B-007S1	B-007S2	B-007S3	B-007S4
Percent Passing Sieve Size	2" 5 1.5" 3 1" 2 0.75" 1 0.5" 1 0.375" 9 0.25" 6 #4 4 #8 2 #10 2 #16 1 #30 0 #40 0 #50 0 #100 0	5mm 0mm 7.5mm 5mm 2.5mm .5mm .5mm .3mm .36mm .18mm .425mm .425mm .3mm .15mm .075mm						
Organic C % Gravel % Sand % Silt & C Max. Dry Opt. Mois Unconsol. Coeff. Of	dex Content % Content % Clay Density ture % . Unconfined T Consolidation	C _v	2.2%	2.2%	2.8%	3.2%	3.7%	3.2%
	p. Strength Q	u						
Pocket Pe	en Value							

TABLE B-2 Page 4 of 65

Sampled By:

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Depth			10	0	2.5	5	0
Test Hole	e No.		B-007	B-008	B-008	B-008	B-009
Field San	nple No.		S5	S1	S2	S3	S1
Date Sam	npled		February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006	February 14, 2006
Lab No.			B-007S5	B-008S1	B-008S2	B-008S3	B-009S1
	3"	75mm					
	2"	50mm					
	1.5"	37.5mm					
	1"	25mm	100.0%				
	0.75"	19mm	95.0%				
	0.5"	12.5mm	82.0%				
Percent	0.375"	9.5mm	76.0%				
Passing	0.25"	6.3mm					
Sieve	#4	4.75mm	66.0%				
Size	#8	2.36mm	57.0%				
Size	#10	2mm					
	#16	1.18mm	48.0%				
	#30	0.6mm	38.0%				
	#40	0.425mm					
	#50	0.3mm	26.0%				
	#100	0.15mm	15.0%				
	#200	0.075mm	10.0%				
DOTTSD							
Liquid Lin	nit						
Plastic In	dex						
Moisture	Content %		4.8%	2.6%	4.1%	8.5%	2.8%
Organic C	Content %						
% Gravel			34%				
% Sand			55%				
% Silt & 0	Clay		10%				
Max. Dry Density							
Opt. Moisture %							
Unconsol. Unconfined Triaxial U _u							
Coeff. Of	Consolidat	ion C _v					
	np. Strengtl	h Q _u					
Pocket Po	en Value						

TABLE B-2 Page 5 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			2.5	5	7.5	0	2.5	5
Test Hole No. Field Sample No.		B-009	B-009	B-009	B-010	B-010	B-010	
Field Sam	nple No.		S2	S3	S4	S1	S2	S3
Date Sam	pled		February 14, 2006					
Lab No.			B-009S2	B-009S3	B-009S4	B-010S1	B-010S2	B-010S3
	3"	75mm						
	2"	50mm						
	1.5"	37.5mm		100.0%		100.0%		
	1"	25mm		95.0%		99.0%		
	0.75"	19mm		95.0%		95.0%		
	0.5"	12.5mm		88.0%		83.0%		
Percent	0.375"	9.5mm		83.0%		73.0%		
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm		74.0%		55.0%		
Size	#8	2.36mm		66.0%		42.0%		
0120	#10	2mm						
	#16	1.18mm		60.0%		34.0%		
	#30	0.6mm		54.0%		25.0%		
	#40	0.425mm						
	#50	0.3mm		46.0%		16.0%		
	#100	0.15mm		38.0%		11.0%		
	#200	0.075mm		31.0%		9.0%		
DOTTSD								
Liquid Lim	nit							
Plastic Ind	dex							
Moisture	Content %		4.3%	10.0%	8.5%	3.0%	9.9%	3.3%
Organic C	Content %							
% Gravel			26%		46%			
% Sand				43%		46%		
% Silt & Clay			31%		9%			
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of	Coeff. Of Consolidation C _v							
Unc. Com	Unc. Comp. Strength Q							
Pocket Pe		~						

TABLE B-2

Page 6 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

15	0	2.5	5	0	2.5
B-010	B-011	B-011	B-011	B-012	B-012
S6	S1	S2			S2
February 14, 2006	February 14, 2006	February 14, 2006	February 14, 2006	February 14, 2006	February 14, 2006
B-010S6	B-011S1	B-011S2	B-011S3	B-012S1	B-012S2
100.0% 95.0% 83.0% 72.0% 65.0% 52.0% 42.0% 33.0% 23.0% 14.0% 10.0% 8.0%					
2.7% 48% 44% 8%	1.8%	3.6%	1.8%	2.1%	1.7%
	B-010 S6 February 14, 2006 B-010S6 100.0% 95.0% 83.0% 72.0% 65.0% 52.0% 42.0% 33.0% 23.0% 14.0% 10.0% 8.0% 2.7%	B-010 B-011 S6 S1 February 14, 2006 February 14, 2006 B-010S6 B-011S1 100.0% B-011S1 95.0% 33.0% 72.0% 65.0% 52.0% 33.0% 33.0% 100.0% 23.0% 100.0% 42.0% 100.0% 14.0% 10.0% 8.0% 11.8% 48% 44%	B-010 B-011 B-011 S6 S1 S2 February 14, 2006 February 14, 2006 February 14, 2006 B-010S6 B-011S1 B-011S2 100.0% B-010S6 B-010S6 95.0% S3.0% S3.0% 72.0% S52.0% S52.0% 65.0% S3.0% S52.0% 33.0% S2 S52.0% 42.0% S52.0% S52.0% 100.0% S52.0% S52.0% 52.0% S52.0% S52.0% 42.0% S52.0% S52.0% 14.0% S52.0% S52.0% 14.0% <t< td=""><td>B-010 B-011 B-011 B-011 S0 S6 S1 S2 S3 February 14, 2006 February 14, 2006 February 14, 2006 B-011S2 B-010S6 B-011S1 B-011S2 B-011S3 100.0% B-01S B-011S3 B-011S3 33.0% B-01S B-011S3 B-011S3 33.0% B-01S B-01S B-01S 33.0% B-01S B-01S B-01S 33.0% B-01S B-01S B-01S 33.0% B-01S B-01S B-01S 14.0% B-01S B-01S B-01S 10.0% B-01S B-01S B-01S 8.0% B-01S</td><td>B-010 B-011 B-011 B-011 B-012 S3 S1 February 14, 2006 B-011S2 B-011S3 B-012S1 B-010.0% B-011S1 B-011S2 B-011S3 B-012S1 B-012S1 100.0% B-011S1 B-011S2 B-011S3 B-012S1 B-012S1 100.0% B-011S1 B-011S2 B-011S3 B-012S1 100.0% B-01S B-01S B-012S1 33.0% B-01 B-01S B-01S 33.0% B-01 B-01S B-01S 14.0% B-01 B-01S B-01S 10.0% B-01 B-01S B-01S 8.0% I.8% 3.</td></t<>	B-010 B-011 B-011 B-011 S0 S6 S1 S2 S3 February 14, 2006 February 14, 2006 February 14, 2006 B-011S2 B-010S6 B-011S1 B-011S2 B-011S3 100.0% B-01S B-011S3 B-011S3 33.0% B-01S B-011S3 B-011S3 33.0% B-01S B-01S B-01S 33.0% B-01S B-01S B-01S 33.0% B-01S B-01S B-01S 33.0% B-01S B-01S B-01S 14.0% B-01S B-01S B-01S 10.0% B-01S B-01S B-01S 8.0% B-01S	B-010 B-011 B-011 B-011 B-012 S3 S1 February 14, 2006 B-011S2 B-011S3 B-012S1 B-010.0% B-011S1 B-011S2 B-011S3 B-012S1 B-012S1 100.0% B-011S1 B-011S2 B-011S3 B-012S1 B-012S1 100.0% B-011S1 B-011S2 B-011S3 B-012S1 100.0% B-01S B-01S B-012S1 33.0% B-01 B-01S B-01S 33.0% B-01 B-01S B-01S 14.0% B-01 B-01S B-01S 10.0% B-01 B-01S B-01S 8.0% I.8% 3.

TABLE B-2 Page 7 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			20	0	2.5	15	30	0
Test Hole No.		B-012	B-013	B-013	B-013	B-013	B-014	
Field Sample No.		S7	S1	S2	S6	S9	S1	
Date Sampled		February 14, 2006	February 14, 2006	February 14, 2006	February 14, 2006	February 14, 2006	February 15, 2006	
Lab No.			B-012S7	B-013S1	B-013S2	B-013S6	B-013S9	B-014S1
	3" 2" 1.5" 1" 0.75"	75mm 50mm 37.5mm 25mm 19mm	100.0% 94.0% 88.0%				100.0% 93.0% 87.0%	
	0.5"	12.5mm	77.0%				76.0%	
Dereent	0.375"	9.5mm	68.0%				69.0%	
Percent Passing	0.25"	6.3mm						
Sieve	#4	4.75mm	51.0%				52.0%	
Size	#8 #10	2.36mm 2mm	40.0%				39.0%	
	#10 #16	2mm 1.18mm	30.0%				28.0%	
	#30	0.6mm	21.0%				21.0%	
	#30 #40	0.425mm	21.070				21.070	
	# 4 0 #50	0.3mm	13.0%				14.0%	
	#100	0.15mm	8.0%				9.0%	
	#200	0.075mm	6.0%				7.0%	
DOTTSD Liquid Lim Plastic Inc								
Moisture (Content %		2.0%	3.3%	2.4%	1.9%	2.5%	2.4%
Organic C	Content %							
% Gravel			49%				48%	
% Sand			45%				45%	
% Silt & C			6%				7%	
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C_v								
Unc. Comp. Strength Q _u								
Pocket Pe	en Value							

TABLE B-2 Page 8 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			5	5	40	0	2.5	5
Test Hole	No.		B-014	B-014	B-014	B-015	B-015	B-015
Field Sam	nple No.		S3	S4	S11	S1	S2	S3
Date Sam	npled		February 15, 2006					
Lab No.			B-014S3	B-014S4	B-014S11	B-015S1	B-015S2	B-015S3
	3" 2" 1.5"	75mm 50mm 37.5mm		100.0%				
	1"	25mm		95.0%	100.0%			
	0.75"	19mm		88.0%	95.0%			
	0.5"	12.5mm		77.0%	84.0%			
Percent	0.375"	9.5mm		69.0%	76.0%			
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm		54.0%	56.0%			
Size	#8	2.36mm		40.0%	42.0%			
0.20	#10	2mm						
	#16	1.18mm		30.0%	30.0%			
	#30	0.6mm		23.0%	19.0%			
	#40	0.425mm						
	#50	0.3mm		16.0%	12.0%			
	#100	0.15mm		11.0%	8.0%			
	#200	0.075mm		8.0%	6.0%			
DOTTSD Liquid Lin Plastic Ind Meiature	nit		1.7%	1.7%	2.5%	2.6%	7.7%	3.9%
			1.1%	1.7%	2.3%	2.0%	1.1%	3.9%
% Gravel	Content %			46%	44%			
% Graver % Sand				46%	44% 50%			
% Sand % Silt & C				8%	50% 6%			
Max. Dry				070	0%			
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
	Coeff. Of Consolidation C _v							
	Unc. Comp. Strength Q _u							
Pocket Pe	en Value							

TABLE B-2 Page 9 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			15	25	0	2.5	5	10
Test Hole No. Field Sample No.		B-015	B-015	B-016	B-016	B-016	B-016	
		S6	S8	S1	S2	S3	S5	
Date Sam	npled		February 15, 2006	February 15, 2006	February 15, 2006	February 15, 2006	February 15, 2006	February 15, 2006
Lab No.			B-015S6	B-015S8	B-016S1	B-016S2	B-016S3	B-016S5
Percent Passing Sieve Size	3" 2" 1.5" 1" 0.75" 0.5" 0.375" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm	100.0% 80.0% 71.0% 67.0% 63.0% 51.0% 41.0% 32.0% 24.0% 16.0% 11.0% 7.0%					
Organic C	nit dex Content % Content %	•	2.7%	Non-Plastic 25.5%	2.7%	2.7%	4.1%	Non-Plastic 8.9%
% Gravel			49%					
% Sand			44%					
% Silt & C			7%					
Max. Dry Density								
	Opt. Moisture %							
Unconsol	Unconsol. Unconfined Triaxial U _u							
Coeff. Of	Coeff. Of Consolidation C _v							
Unc. Com	Jnc. Comp. Strength Q _u							
Pocket Pe		~		0.25				

TABLE B-2 Page 10 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			30	0	2.5	5	0	2.5
Test Hole	No.		B-016	B-017	B-017	B-017	B-018	B-018S2
Field Sam	nple No.		S9	S1	S2	S3	S1	S2
Date Sam	npled		February 15, 2006	February 15, 2006	February 15, 2006	February 15, 2006	February 16, 2006	February 16, 2006
Lab No.			B-016S9	B-017S1	B-017S2	B-017S3	B-018S1	B-018S2
	3" 2" 1.5"	75mm 50mm 37.5mm	100.0%				100.0%	
	1"	25mm	93.0%				99.0%	
	0.75"	19mm	83.0%				98.0%	
	0.5"	12.5mm	76.0%				92.0%	
Percent	0.375"	9.5mm	69.0%				86.0%	
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm	56.0%				73.0%	
Size	#8	2.36mm	43.0%				63.0%	
0.20	#10	2mm						
	#16	1.18mm	31.0%				54.0%	
	#30	0.6mm	22.0%				47.0%	
	#40	0.425mm						
	#50	0.3mm	14.0%				37.0%	
	#100	0.15mm	9.0%				27.0%	
	#200	0.075mm	6.0%				21.0%	
DOTTSD Liquid Lim Plastic Inc	dex							
	Content %		3.4%	4.3%	2.0%	1.8%	4.1%	1.5%
Organic C								
% Gravel			45%				27%	
% Sand			49%				52%	
% Silt & C			6%				21%	
Max. Dry								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C _v								
Unc. Comp. Strength Q _u								
Pocket Pe	en Value							

TABLE B-2

Page 11 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			7.5	0	2.5	15	25	0
Test Hole No. Field Sample No.		B-018	B-019	B-019	B-019	B-019	B-020	
Field Sam	nple No.		S4	S1	S2	S6	S8	S1
Date Sam			February 16, 2006	February 16, 2006	February 16, 2006	February 16, 2006	February 16, 2006	February 16, 2006
Lab No.			B-018S1	B-019S1	B-019S2	B-019S6	B-019S8	B-020S1
Percent Passing Sieve Size	3" 2" 1.5" 1" 0.75" 0.5" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 6.3mm 4.75mm 2.36mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm				100.0% 90.0% 82.0% 72.0% 54.0% 42.0% 33.0% 23.0% 10.0% 6.0% 4.0%	100.0% 83.0% 74.0% 70.0% 61.0% 45.0% 33.0% 23.0% 15.0% 11.0% 8.0% 7.0%	
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u		6.7%	1.5%	1.2%	1.7% 46% 49% 4%	1.2% 55% 38% 7%	2.7%	
		Q _u	. 4 5					
Pocket Pe	en value		>4.5					

TABLE B-2 Page 12 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Sampled By: Andrew Lee

Depth			2.5	5	0	2.5	0	2.5
Test Hole	No.		B-020	B-020	B-021	B-021	B-022	B-022
Field San	nple No.		S2	S3	S1	S2	S1	S2
Date Sam			February 16, 2006	February 16, 2006	February 16, 2006	February 16, 2006	February 17, 2006	February 17, 2006
Lab No.			B-020S2	B-020S3	B-021S1	B-021S2	B-022S1	B-022S2
Percent Passing Sieve Size	3" 2" 1.5" 1" 0.75" 0.5" 0.375" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm			100.0% 97.0% 91.0% 80.0% 71.0% 53.0% 41.0% 32.0% 25.0% 17.0% 13.0% 10.0%			
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u		2.3%	11.0%	3.0% 47% 42% 10%	4.9%	2.6%	2.4%	
Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value								

TABLE B-2 Page 13 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			5	7.5	0	2.5	5	7.5
Test Hole No. Field Sample No.		B-022	B-022	B-023	B-023	B-023	B-023	
Field Sam	nple No.		S3	S4	S1	S2	S3	S4
Date Sampled		February 17, 2006						
Lab No.			B-022S3	B-022S4	B-023S1	B-023S2	B-023S3	B-023S4
	3" 2"	75mm 50mm						
	∠ 1.5"	37.5mm						400.00/
	1.5 4 "	25mm		100.0%				100.0% 79.0%
	י 0.75"	25mm 19mm		94.0%				79.0%
	0.75 0.5"	12.5mm						
	0.5 0.375"			81.0%				71.0%
Percent		9.5mm		76.0%				68.0%
Passing	0.25"	6.3mm 4.75mm						50.00/
Sieve	#4			65.0%				59.0%
Size	#8	2.36mm		55.0%				49.0%
	#10	2mm		47 00/				40.00/
	#16 #20	1.18mm		47.0%				40.0%
	#30	0.6mm		38.0%				30.0%
	#40	0.425mm		00.00/				04.00/
	#50 #100	0.3mm 0.15mm		29.0% 23.0%				21.0% 15.0%
	#200	0.075mm		20.0%				12.0%
DOTTSD								
Liquid Lin								
Plastic In								
	Content %		54.8%	5.6%	3.2%	2.2%	1.5%	1.8%
Organic C								
% Gravel				35%				41%
% Sand				45%				47%
% Silt & C				20%				12%
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C _v								
Unc. Comp. Strength Q _u								
Pocket Pe		~ u						

TABLE B-2 Page 14 of 65

TABLE B-2 Page 15 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

0	2.5	5	0	2.5	5
B-024	B-024	B-024	B-025	B-025	B-025
					S3
					February 17, 2006
B-024S1	B-024S2	B-024S3	B-025S1	B-025S2	B-025S3
					100.0% 80.0% 63.0% 60.0% 48.0% 38.0% 28.0% 22.0% 16.0% 13.0% 10.0%
2.8%	1.1%	1.1%	3.0%	0.9%	0.5% 52% 38% 10%
n m	B-024 S1 February 17, 2006 B-024S1	B-024 B-024 S1 S2 February 17, 2006 February 17, 2006 B-024S1 B-024S2 A	B-024 B-024 B-024 S3 February 17, 2006 February 17, 2006 February 17, 2006 B-024S3 B-024S1 B-024S2 B-024S3 B-024S3 Andrew Stress Stress Stress Stress Andrew Strew Stress Stress	B-024 B-024 B-024 B-025 S1 S2 S3 S1 February 17, 2006 February 17, 2006 February 17, 2006 B-024S3 B-025S1 B-024S1 B-024S2 B-024S3 B-025S1 B-025S1 B-025S1 Andread B-024S1 B-024S2 B-024S3 B-025S1 B-025S1 Andread B-024S1 B-024S3 B-024S3 B-025S1 B-024S3 Andread B-024S1 B-024S3 B-025S1 B-024S3 B-025S1 Andread B-024S1 B-024S1 B-024S1 B-024S1 B-024S1 Andread B-024S1 B-024S1 B-024S1 B-024S1 B-024S1 Andread B-024S1 B-024S1 B-024S1 B-024S1	B-024 S1 B-024 S2 B-024 S3 B-025 S3 B-025 S1 B-025 S2 February 17, 2006 B-024S1 February 17, 2006 B-024S3 February 17, 2006 B-025S1 February 17, 2006 B-025S2 Andore Antimetry 17, 2007 February 17, 2006 B-024S3 February 17, 2006 B-025S1 February 17, 2006 B-025S2 Andore Antimetry 17, 2007 February 17, 2006 B-024S3 February 17, 2006 B-025S1 February 17, 2006 B-025S2 Antimetry 17, 2007 February 17, 2006 B-024S3 February 17, 2006 B-025S1 February 17, 2006 B-025S2 Antimetry 17, 2007 February 17, 2006 B-024S3 February 17, 2006 B-025S2 February 17, 2006 B-025S2 Antimetry 17, 2007 February 17, 2006 B-024S3 February 17, 2006 B-024S3 February 17, 2006 B-025S2 Antimetry 17, 2007 February 17, 2006 B-024S3 February 17, 2006 B-024S3 February 17, 2006 B-024S3 Antimetry 17, 2007 February 17, 2006 B-024S3 February 17, 2006 B-024S3 February 17, 2006 B-024S3 Antimetry 17, 2006 February 17, 2006 B-024S3 February 17, 2006 B-024S3 February 17, 2006 B-024S3 Antimetry 17, 2006 February 17, 2006 B-024S3 February 17, 2006 B-024S3 February 17, 2006 B-024S3

TABLE B-2 Page 16 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth		0	2.5	7.5	0	2.5	5
Test Hole No.		B-026	B-026	B-026	B-027	B-027	B-027
Field Sample No.		S1	S2	S4	S1	S2	S3
Date Sampled		February 17, 2006					
Lab No.		B-026S1	B-026S2	B-026S4	B-027S1	B-027S2	B-027S3
Percent	3" 75mm 2" 50mm 1.5" 37.5m 1" 25mm 0.75" 19mm 0.5" 12.5m 0.375" 9.5mn 0.25" 6.3mn #4 4.75m #10 2mm #16 1.18m #30 0.6mn #40 0.425r #50 0.3mn #100 0.15m #200 0.075r	n					100.0% 89.0% 86.0% 77.0% 56.0% 42.0% 31.0% 23.0% 17.0% 12.0% 9.0%
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value		U _u	0.3%	0.3%	2.8%	0.9%	1.6% 44% 47% 9%

TABLE B-2 Page 17 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth		0	2.5	5	7.5	10	15
Test Hole No.		B-028	B-028	B-028	B-028	B-028	B-028
Field Sample No.		S1	S2	S3	S4	S5	S6
Date Sampled		February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006
Lab No.		B-028S1	B-028S2	B-028S3	B-028S4	B-028S5	B-028S6
Percent Passing Sieve Size	3" 75mn 2" 50mn 1.5" 37.5n 1" 25mn 0.75" 19mn 0.5" 12.5n 0.375" 9.5mn 0.25" 6.3mn #4 4.75n #8 2.36n #10 2mm #16 1.18n #30 0.6mn #40 0.425 #50 0.3mn #100 0.15n #200 0.075	Im Im <td></td> <td></td> <td></td> <td></td> <td></td>					
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u		4.0%	30.2%	376.8%	94.8%	106.5%	21.3%
Pocket Pen Value							2.5

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			0	2.5	5	7.5	15	0
Test Hole No.			B-029	B-029	B-029	B-029	B-029	B-030
Field Sample No.			S1	S2	S3	S4	S6	S1
Date Sampled			February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006
Lab No.			B-029S1	B-029S2	B-029S3	B-029S4	B-029S6	B-030S1
Percent Passing Sieve Size	2" 1.5" 1" 0.75" 0.5" 0.375" 0.25" #4 #8 #10 #16	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm	100.0% 94.0% 91.0% 83.0% 75.0% 57.0% 42.0% 31.0% 25.0%					
	#40 #50 #100 #200	0.425mm 0.3mm 0.15mm 0.075mm	20.0% 16.0% 14.0%					
DOTTSD								
Liquid Lin								
Plastic Index Moisture Content % Organic Content %			3.3%	2.8%	2.2%	3.5%	21.2%	3.9%
% Gravel			43%					
% Sand			43%					
% Silt & Clay			14%					
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C _v								
Unc. Comp. Strength Q _u								
Pocket Pe								

TABLE B-2 Page 18 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Andrew Lee

Sampled By:

Depth			2.5	5	7.5	10	15	0
Test Hole No.			B-030	B-030	B-030	B-030	B-030	B-031
Field Sample No.			S2	S3	S4	S5	S6	S1
Date Sampled			February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006
Lab No.			B-030S2	B-030S3	B-030S4	B-030S5	B-030S6	B-031S1
Percent Passing Sieve Size	3" 2" 1.5" 1.5" 0.75" 0.375" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm	100.0% 85.0% 82.0% 74.0% 69.0% 54.0% 43.0% 33.0% 24.0% 18.0% 14.0% 10.0%					
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value		2.1% 46% 44% 10%	2.0%	3.5%	3.3%	15.6%	3.7%	

TABLE B-2 Page 19 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Sampled By: Andrew Lee

Depth		2.5	5	7.5	10	15	0	
Test Hole No.			B-031	B-031	B-031	B-031	B-031	B-032
Field Sample No.		S2	S3	S4	S5	S6	S1	
Date Sampled		February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	
Lab No.		B-031S2	B-031S3	B-031S4	B-031S5	B-031S6	B-032S1	
Percent Passing Sieve Size	2" 50 1.5" 37 1" 25 0.75" 12 0.5" 12 0.375" 9. 0.25" 6. #4 4. #8 2. #10 2r #16 1. #30 0. #40 0. #50 0. #100 0.	5mm 0mm 7.5mm 5mm 2.5mm .5mm .3mm .36mm .18mm .425mm .3mm .15mm .15mm .075mm						
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u		4.4%	3.3%	2.1%	7.7%	21.1%	2.7%	
Pocket Pen Value						>4.5		

TABLE B-2 Page 20 of 65

TABLE B-2 Page 21 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Sampled By: Andrew Lee

Depth			2.5	5	7.5	10	15	20
Test Hole No.			B-032	B-032	B-032	B-032	B-032	B-032
Field Sample No.		S2	S3	S4	S5	S6	S7	
Date Sampled		February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	February 21, 2006	
Lab No.	-		B-032S2	B-032S3	B-032S4	B-032S5	B-032S6	B-032S7
Percent Passing Sieve Size	2" 1.5" 1" 0.75" 0.5" 0.375" 0.25" 44 #8 #10 #16 #30 (#40 #50 (75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.3mm						
DOTTSD	1	0.075mm						
Liquid Lim								
Plastic Inc				10.001	10 101	10	10 101	
Moisture (8.2%	10.9%	16.4%	13.7%	19.4%	10.5%
Organic Content %								
% Gravel % Sand								
% Sand % Silt & Clay								
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C_v								
	Unc. Comp. Strength Q _u				0.5			
Pocket Pe	en value				2.5			

TABLE B-2 Page 22 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth Test Hele No		0	2.5	5	7.5	10	15	
Test Hole No.		B-033	B-033	B-033	B-033	B-033	B-033	
Field Sample No.		S1	S2	S3	S4	S5	S6	
Date Sampled		February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	
Lab No.			B-033S1	B-033S2	B-033S3	B-033S4	B-033S5	B-033S6
Percent Passing Sieve Size	2" 5 1.5" 3 1" 2 0.75" 1 0.5" 1 0.375" 9 0.25" 6 #4 4 #8 2 #10 2 #16 1 #30 0 #40 0 #50 0 #100 0	5mm 0mm 7.5mm 5mm 2.5mm .5mm .3mm .36mm .18mm .425mm .425mm .3mm .15mm					100.0% 98.0% 95.0% 92.0% 85.0% 78.0% 73.0% 68.0% 61.0% 54.0%	
DOTTOD	#200 0	.075mm					47.0%	
DOTTSD Liquid Lim								
Plastic Ind								
Moisture C			5.3%	7.7%	10.9%	10.8%	11.6%	20.7%
Organic C			0.070	11170	10.070	10.070	11.070	2011 /0
% Gravel						15%		
% Sand						38%		
% Silt & Clay						47%		
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C_v								
Unc. Comp. Strength Q								
Pocket Pe		-						>4.5

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth Test Hole No. Field Sample No.			20	0	2.5	5	7.5	10
Test Hole No. Field Sample No. Date Sampled			B-033	B-034	B-034	B-034	B-034	B-034
Field Sample No. Date Sampled		S7	S1	S2	S3	S4	S5	
		February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	
Lab No.			B-033S7	B-034S1	B-034S2	B-034S3	B-034S4	B-034S5
Percent Passing Sieve Size	3" 2" 1.5" 0.75" 0.5" 0.375" 0.25" #4 #8 #10 #16 #30 #40	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm		100.0% 98.0% 91.0% 86.0% 71.0% 57.0% 47.0% 38.0%				
	#50 #100 #200	0.3mm 0.15mm 0.075mm		28.0% 21.0% 17.0%				
DOTTSD								
Liquid Lin								
Plastic Inc								
	Content %		18.9%	3.7%	8.0%	19.8%	53.8%	295.4%
Organic C	Content %							
% Gravel			29%					
% Sand			54%					
% Silt & Clay			17%					
Max. Dry Density Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
	Coeff. Of Consolidation C_v							
	np. Strengtl	h Q _u						
Pocket Pe	en Value		4.0					

TABLE B-2 Page 23 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth Test Hole No		15	0	2.5	5	7.5	10
Test Hole No).	B-034	B-035	B-035	B-035	B-035	B-035
Field Sample No.		S6	S1	S2	S3	S4	S5
Date Sampled		February 22, 2006					
Lab No.		B-034S6	B-035S1	B-035S2	B-035S3	B-035S4	B-035S5
1" 0.3 0.4 0.4 0.4 0.4 0.4 0.4 9 0.4 9 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9	50mm 5" 37.5mm 25mm 25mm .75" 19mm .5" 12.5mm .375" 9.5mm .25" 6.3mm 4 4.75mm 8 2.36mm 10 2mm 16 1.18mm 30 0.6mm 40 0.425mm						
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value		17.4%	3.3%	30.7% 88%	26.7%	8.5%	21.4%

TABLE B-2 Page 24 of 65

Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 25 of 65

Project No.:

Project Name:

32-1-01536-003

Sampled By: Andrew Lee

Depth Test Hole No			15	0	2.5	5	7.5	10
Test Hole No.			B-035	B-036	B-036	B-036	B-036	B-036
Field Sample No.		S6	S1	S2	S3	S4	S5	
Date Sampled		February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	
Lab No.	Lab No.		B-035S6	B-036S1	B-036S2	B-036S3	B-036S4	B-036S5
Percent Passing Sieve Size	0.375" 9.5n 0.25" 6.3n #4 4.75 #8 2.36 #10 2mn #16 1.18 #30 0.6n #40 0.42 #50 0.3n #100 0.15	nm 5mm 1m 5mm 5mm 1m 5mm 5mm 5mm 15mm 10 10 10 10 10 10 10 10 10 10 10 10 10						
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u		ũ	25 4 24.9%	2.6%	4.5%	20.1% 69%	20.4%	20.4%
Pocket Pe	en Value		1.5-2.25				0.5	

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth Test Hole No. Field Sample No.		15	0	2.5	5	7.5	10
Test Hole No. Field Sample No.		B-036	B-037	B-037	B-037	B-037	B-037
Field Sample	e No.	S6	S1	S2	S3	S4	S5
Date Sampled		February 22, 2006					
Lab No.		B-036S6	B-037S1	B-037S2	B-037S3	B-037S4	B-037S5
3' 2'							
	.5" 50mm						
1.				100.0%			
).75" 25mm			95.0%			
	0.5" 12.5m			89.0%			
	0.375" 12.5ft 0.375" 9.5mr			85.0%			
Percent	0.25" 9.311 0.25" 6.3mr			05.0%			
Passing "				72.0%			
Sieve "				61.0%			
	10 2.301			01.070			
	16 1.18m	m		52.0%			
	430 0.6mr			46.0%			
	40 0.425			+0.070			
	450 0.3mr			39.0%			
	100 0.15m			31.0%			
	200 0.075			25.0%			
DOTTSD							
Liquid Limit							
Plastic Index	x						
Moisture Cor		18.5%	3.4%	7.3%	5.0%	17.3%	18.5%
Organic Con							
% Gravel				28%			
% Sand				46%			
% Silt & Clay				25%			
Max. Dry Density							
Opt. Moisture %							
Unconsol. Unconfined Triaxial U		al U _u					
Coeff. Of Consolidation C_v							
Unc. Comp. Strength Q_u							
Pocket Pen		2.0->4.5					2.25

TABLE B-2 Page 26 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth Test Hole No. Field Sample No.		15	0	2.5	5	7.5	10
Test Hole No).	B-037	B-038	B-038	B-038	B-038	B-038
Field Sample No. Date Sampled		S6	S1	S2	S3	S4	S5
		February 22, 2006					
Lab No.		B-037S6	B-038S1	B-038S2	B-038S3	B-038S4	B-038S5
3" 2"	50mm						
1.t 1"							
0.7	75" 19mm				100.0%		
0.5	5" 12.5mm				97.0%		
0.3	375" 9.5mm				97.0%		
Percent 0.2	25" 6.3mm						
Passing Sieve #4 4.75mm					95.0%		
Sieve Size #8	3 2.36mm				94.0%		
Size #1	10 2mm						
#1	16 1.18mm				93.0%		
#3	30 0.6mm				91.0%		
#4							
#5					82.0%		
#1	100 0.15mm				65.0%		
#2	200 0.075mm				53.0%		
DOTTSD	-						
Liquid Limit							
Plastic Index							
Moisture Con		17.5%	3.3%	26.0%	17.2%	21.0%	21.3%
Organic Cont			0.070	20.070	/0		2
% Gravel					5%		
% Sand					42%		
% Silt & Clay				78%	53%		
Max. Dry Density							
Opt. Moisture %							
Unconsol. Unconfined Triaxial U _u							
Coeff. Of Consolidation C_v							
Unc. Comp. S	Strength Q						
Pocket Pen V							

Page 27 of 65

TABLE B-2

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth		15	0	2.5	5	0	2.5
Test Hole No.		B-038	B-039	B-039	B-039	B-040	B-040
Field Sample No.		S6	S1	S2	S3	S1	S2
Date Sampled		February 22, 2006	February 23, 2006	February 23, 2006	February 23, 2006	February 23, 2006	February 23, 2006
Lab No.		B-038S6	B-039S1	B-039S2	B-039S3	B-040S1	B-040S2
2" 5 1.5" 3 1" 2 0.75" 1 0.5" 1 0.375" 9 Passing 44 4 Sieve #8 2 Size #10 2 #16 1 #30 0 #40 0 #40 0 #50 0 #100 0	75mm 60mm 67.5mm 97.5mm 9mm 2.5mm 2.5mm 9.5mm 9.3mm 2.36mm 2.36mm 9.425mm 9.425mm 9.3mm 9.15mm 9.075mm				100.0% 98.0% 98.0% 97.0% 96.0% 96.0% 95.0% 92.0% 45.0% 19.0% 10.0%		
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value		22.1%	3.9%	3.3%	9.8% 3% 86% 10%	4.0%	9.2%

TABLE B-2 Page 28 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth Test Hole No. Field Sample No.			5	7.5	0	2.5	5	0
Test Hole No. Field Sample No.		B-040	B-040	B-041	B-041	B-041	B-042	
Date Sampled		S3	S4	S1	S2	S3	S1	
Date Sam	npled		February 23, 2006					
Lab No.			B-040S3	B-040S4	B-041S1	B-041S2	B-041S3	B-042S1
	3" 2"	75mm 50mm						
	2 1.5"	37.5mm						
	1.0 1"	25mm		100.0%		100.0%		
	0.75"	25mm 19mm		86.0%		96.0%		
	0.75	12.5mm		78.0%		94.0%		
	0.5 0.375"	9.5mm		78.0%		94.0%		
Percent				72.0%		93.0%		
Passing 0.25" 6.3mm			57.0%		86.0%			
Sieve	#4 #8	4.75mm 2.36mm		45.0%		81.0%		
Size	#0 #10	2.30mm		40.070		01.070		
	#16	1.18mm		36.0%		77.0%		
	#30	0.6mm		26.0%		74.0%		
	#40	0.425mm		20.070		74.070		
	#50	0.3mm		17.0%		69.0%		
	#100 #100	0.15mm		11.0%		65.0%		
	#200	0.075mm		8.0%		59.0%		
DOTTSD								
Liquid Lin								
Plastic In								
	Content %		2.4%	9.0%	10.1%	13.9%	15.4%	6.1%
	Content %		2.170	0.070	1011/0	101070	1011/0	0.170
% Gravel				43%		14%		
% Sand			50%		26%			
% Silt & Clay			8%		59%			
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C_v								
	Unc. Comp. Strength Q_u							
Pocket Po		u v						
POCKELP								

TABLE B-2 Page 29 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Andrew Lee

Sampled By:

Depth Test Hole No.			2.5	7.5	25	0	5	7.5
Test Hole No.		B-042	B-042	B-042	B-043	B-043	B-043	
Field Sample No. Date Sampled		S2	S4	S8	S1	S3	S4	
Date Sampled		February 23, 2006	February 23, 2006	February 23, 2006	February 23, 2006	February 23, 2006	February 23, 2006	
Lab No.			B-042S2	B-042S3	B-042S4	B-043S1	B-043S3	B-043S4
	3" 2" 1.5" 1"	75mm 50mm 37.5mm 25mm				100.0% 99.0%		
	0.75"	19mm				96.0%		
	0.5"	12.5mm			100.0%	91.0%		
_	0.375"	9.5mm			99.0%	86.0%		
Percent	0.25"	6.3mm						
Passing	#4	4.75mm			99.0%	69.0%		
Sieve	#8	2.36mm			98.0%	54.0%		
Size	#10	2mm						
	#16	1.18mm			98.0%	41.0%		
	#30	0.6mm			97.0%	31.0%		
	#40	0.425mm						
	#50	0.3mm			97.0%	22.0%		
	#100	0.15mm			97.0%	17.0%		
	#200	0.075mm			96.0%	14.0%		
DOTTSD Liquid Lin Plastic Ind	nit dex							
	Content %		3.7%	15.2%	22.0%	3.7%	29.0%	16.3%
	Content %							
	% Gravel				1%	31%		
% Sand				3%	55%			
% Silt & Clay				96%	14%			
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U_u								
Coeff. Of Consolidation C_v								
Unc. Comp. Strength Q _u								
Pocket Pe		ŭ			1.5			

TABLE B-2 Page 30 of 65

TABLE B-2 Page 31 of 65

Knik Arm Bridge, Mat-Su Access Route

Project No.:

Project Name:

32-1-01536-003

Andrew Lee

Sampled By:

Depth Test Hole No.		0	2.5	5	0	2.5	7.5	
Test Hole No.		B-044	B-044	B-044	B-045	B-045	B-045	
Field Sample No.		S1	S2	S3	S1	S2	S6	
Date Sampled Lab No.		February 24, 2006						
Lab No.			B-044S1	B-044S2	B-044S3	B-045S1	B-045S2	B-045S6
		5mm 0mm						
		7.5mm	100.0%				100.0%	
		5mm	99.0%				95.0%	100.0%
	0.75" 19	9mm	98.0%				95.0%	98.0%
	0.5" 12	2.5mm	92.0%				91.0%	97.0%
Doroont	0.375" 9.	.5mm	86.0%				85.0%	96.0%
Percent	0.25" 6.	.3mm						
Passing Sieve	#4 4.	.75mm	66.0%				74.0%	94.0%
Sieve	#8 2.	.36mm	49.0%				65.0%	93.0%
Size		mm						
		.18mm	37.0%				58.0%	92.0%
		.6mm	28.0%				52.0%	91.0%
		.425mm						
		.3mm	22.0%				45.0%	88.0%
		.15mm	17.0%				39.0%	85.0%
	#200 0.	.075mm	14.0%				34.0%	84.0%
DOTTSD								
Liquid Lim	it							
Plastic Ind	lex							
Moisture C	Content %		2.6%	1.9%	17.7%	4.0%	16.9%	23.9%
Organic Content %								
% Gravel		34%				26%	6%	
% Sand		52%				41%	10%	
% Silt & Clay		14%				34%	84%	
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U_u								
Coeff. Of Consolidation C _v								
Unc. Comp. Strength Q _u								
Pocket Pe	n Value							2.5-4.5

TABLE B-2 Page 32 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By: Eliz

Elizabeth A. Karcheski & Andrew Lee

Test Hole No.		7.5	10	0	2.5	5
	B-046	B-046	B-046	B-047	B-047	B-047
Field Sample No.	S2	S3	S4	S1	S2	S3
Date Sampled	March 9, 2006	March 9, 2006	March 9, 2006	February 24, 2006	February 24, 2006	February 24, 2006
Lab No.	B-046S2	B-046S3	B-046S4	B-047S1	B-047S2	B-047S3
3" 75mm 2" 50mm 1.5" 37.5mm 1" 25mm 0.75" 19mm 0.5" 12.5mm 0.5" 9.5mm 0.25" 6.3mm Sieve #4 4.75mm Size #10 2mm #16 1.18mm #30 #40 0.425mm #40 #200 0.075mm 1.15mm			100.0% 86.0% 80.0% 63.0% 50.0% 39.0% 29.0% 17.0% 11.0% 8.0%			
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value	13.1%	9.8%	9.6% 37% 55% 8%	3.3%	7.4%	51.5%

TABLE B-2 Page 33 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By:

Elizabeth A. Karcheski & Andrew Lee

Depth		2.5	7.5	10	20	0	2.5
Test Hole	No.	B-048	B-048	B-048	B-048	B-049	B-049
Field Sam	ple No.	S1	S3	S4	S6	S1	S2
Date Sam	pled	March 9, 2006	March 9, 2006	March 9, 2006	March 9, 2006	February 24, 2006	February 24, 2006
Lab No.		B-048S1	B-048S3	B-048S4	B-048S6	B-049S1	B-049S2
Percent Passing Sieve Size	3" 75mm 2" 50mm 1.5" 37.5m 1" 25mm 0.75" 19mm 0.5" 12.5m 0.375" 9.5mm 0.25" 6.3mm #4 4.75m #10 2mm #16 1.18m #30 0.6mm #40 0.425r #50 0.3mm #100 0.15m #200 0.075r	n n n m n					
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u		18.9%	22.0%	25.8%	187 126 166.5%	3.0%	8.7%
Pocket Pe							

TABLE B-2 Page 34 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By: Elizabeth A

Elizabeth A. Karcheski & Andrew Lee

Depth			20	7.5	10	0	2.5	5
Test Hole	No.		B-049	B-050	B-050	B-051	B-051	B-051
Field Sam			S7	S3	S4	S1	S2	S3
Date Sam	pled		February 24, 2006	March 8, 2006	March 8, 2006	February 24, 2006	February 24, 2006	February 24, 2006
Lab No.			B-049S7	B-050S3	B-050S4	B-051S1	B-051S2	B-051S3
Percent Passing Sieve Size	2" 50 1.5" 37 1" 25 0.75" 19 0.5" 12 0.375" 9.5 0.25" 6.3 #4 4.7 #8 2.3 #10 2n #16 1.7 #30 0.6 #40 0.4 #50 0.3	5mm 7.5mm 5mm 5mm 2.5mm 5mm 5mm 36mm 18mm 18mm 6mm 425mm 3mm	100.0% 91.0% 90.0% 87.0% 82.0% 71.0% 59.0% 45.0% 28.0% 14.0%			100.0% 99.0% 95.0% 89.0% 72.0% 57.0% 46.0% 36.0% 27.0%		
		15mm 075mm	8.0% 5.0%			22.0% 18.0%		
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content %			11.8%	15.0%	14.0%	3.0%	2.5%	3.2%
% Gravel			29%			28%		
% Sand			66%			54%		
% Silt & Clay			5%			18%		
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U_u								
Coeff. Of Consolidation C_v		C _v						
Unc. Comp. Strength Q _u								
Pocket Pe	n Value							

Project Name:

Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 35 of 65

Project No	D.:	32-1-01536	-003	Sampled By:	Elizabeth A. Karcheski			
Depth			2.5	5	7.5	2.5	5	7.5
Test Hole	No.		B-052	B-052	B-052	B-053	B-053	B-053
Field Sam	ple No.		S1	S2	S3	S1	S2	S3
Date Sam			March 8, 2006	March 8, 2006	March 8, 2006	March 8, 2006	March 8, 2006	March 8, 2006
Lab No.			B-052S1	B-052S2	B-052S3	B-053S1	B-053S2	B-053S3
Percent Passing Sieve Size	3" 2" 1.5" 0.75" 0.5" 0.25" #4 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.425mm 0.425mm 0.3mm 0.15mm 0.075mm			100.0% 96.0% 91.0% 90.0% 87.0% 84.0% 81.0% 76.0% 70.0% 56.0% 40.0%			
DOTTSD Liquid Lim Plastic Inc								
Moisture 0			13.9%	10.4%	14.5%	18.2%	13.2%	11.9%
Organic C	ontent %							
% Gravel					13%			
% Sand					47%			
% Silt & Clay				40%				
Max. Dry Density								
Opt. Moist								
Unconsol. Unconfined Triaxial U								
Coeff. Of Consolidation C_v								
	Unc. Comp. Strength Q_u							
Pocket Pe		u						

Project Name:

Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 36 of 65

Project No	0.:	32-1-01536	-003	Sampled By:	Elizabeth A. Karcheski			
Depth Test Hole Field Sam Date Sam	nple No.		10 B-053 S4 March 8, 2006	2.5 B-054 S1 March 8, 2006	5 B-054 S2 March 8, 2006	7.5 B-054 S3 March 8, 2006	20 B-054 S6 March 8, 2006	7.5 B-055 S3 March 8, 2006
Lab No.			B-053S4	B-054S1	B-054S2	B-054S3	B-054S6	B-055S3
Percent Passing Sieve Size	3" 2" 1.5" 0.75" 0.5" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm	100.0% 95.0% 92.0% 89.0% 85.0% 76.0% 62.0% 48.0%					
Organic Content % % Gravel 5% % Sand 47%		12.3% 5% 47% 48%	11.1%	13.3%	13.7%	30 10 19.5%	16.8%	
Pocket Pe	en Value						>4.5	

TABLE B-2 Page 37 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By:

Elizabeth A. Karcheski

Liquid Limit Plastic IndexImage: marked state sta	Depth			10	15	0	2.5	5	0
Date Sample March 8, 2006 March 8, 2006 February 25, 2006 February 25, 2006 B-056S3 B-057S1 $Lab No.$ 3" 75mm B-055S4 B-055S5 B-056S1 B-056S2 B-056S3 B-057S1 $2"$ 50mm 1.6 Somm Income Incom Inc		No.		B-055	B-055	B-056	B-056		B-057
Lab No.B-055S4B-055S5B-056S1B-056S2B-056S2B-056S3B-057S13" 1" 1" 1" 2" 1" 1" 1" 1" 1" 1" 2" 5" 1"<	Field Sam	nple No.				S1			S1
3* 75mm 2 50mm 1.5* 37,5mm 100.0% 100.0% 100.0% 0.75* 19mm 97.0% 99.0% 99.0% 0.75* 19mm 97.0% 99.0% 99.0% 0.375* 9.5mm 80.0% 95.0% 95.0% 0.375* 9.5mm 80.0% 92.0% 91.0% 0.375* 9.5mm 80.0% 92.0% 91.0% 2.36* 6.3mm 92.0% 91.0% 2.36mm 58.0% 63.0% 74.0% #0 2.36mm 58.0% 63.0% 74.0% #10 2mm 41.0% 40.0% 40.0% #0 0.6mm 47.0% 41.0% 28.0% #10 0.1mm 41.0% 26.0% 20.0% #200 0.075mm 40.0% 21.0% 43.% Organic Content % 14.2% 11.9% 2.9% 21.1% 43.% Organic Content % 33% 22%		npled		March 8, 2006	March 8, 2006		February 25, 2006	February 25, 2006	February 25, 2006
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lab No.			B-055S4	B-055S5	B-056S1	B-056S2	B-056S3	B-057S1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.5"	37.5mm						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			25mm						
			19mm						
Percent Passing Sieve Size 0.25" 6.3mm 44 4.75mm 47.5mm 67.0% 78.0% 74.0% #8 2.36mm #10 2mm 2mm 66.0% 63.0% 58.0% 50.0% #10 2mm #16 1.18mm 52.0% 51.0% 48.0% #30 0.6mm #40 0.425mm 0.425mm 47.0% 32.0% 41.0% 40.0% #50 0.3mm #10 41.0% 26.0% 22.0% 29.0% #100 0.15mm 41.0% 26.0% 22.0% 22.0% #200 0.075mm 40.0% 21.0% 21.0% 22.0% Liquid Limit Plastic Index 14.2% 11.9% 2.9% 21.1% 22.3% 4.3% Organic Content % % Srave! 14.2% 11.9% 2.9% 21.1% 22.3% 4.3% Max. Dry Density Opt. Moisture % 40% 21% 21% 26% 57% 56% Max. Dry Density Opt. Moisture % 40% 21% 21% 66% 40% 21% 66%									
Passing Sieve 0.25° 6.3mm 67.0% 78.0% 74.0% Sieve #4 4.75mm 67.0% 63.0% 59.0% #10 2mm 63.0% 63.0% 59.0% #10 2mm 63.0% 64.0% 59.0% #10 2mm 63.0% 64.0% 64.0% #30 0.6mm 47.0% 441.0% 440.0% #40 0.425mm 440.0% 32.0% 29.0% #100 0.15mm 44.0% 32.0% 22.0% #100 0.15mm 44.0% 22.0% 22.0% #200 0.075mm 40.0% 21.0% 22.0% DOTTSD Inguid Limit Inguid Limit Inguid Limit Inguid Limit Plastic Index 14.2% 11.9% 2.9% 21.1% 22.3% 4.3% Organic Content % 14.2% 11.9% 2.9% 21.1% 26% 56% % Sith & Clay 33% 22% 56% 56%	Porcont		9.5mm	80.0%		92.0%			91.0%
Sieve #4 4,70m 67.0% 78.0% 74.0% Size #8 2.36mm 58.0% 63.0% 59.0% #10 2mm 63.0% 63.0% 48.0% #16 1.18mm 52.0% 51.0% 48.0% #30 0.6mm 47.0% 41.0% 40.0% #40 0.425mm - - - #50 0.3mm 44.0% 32.0% 29.0% #100 0.15mm 41.0% 26.0% 22.0% #200 0.075mm 40.0% 21.0% 18.0% DOTTSD 14.2% 11.9% 2.9% 21.1% 22.3% Variable Content % 14.2% 11.9% 2.9% 21.1% 22.3% % Gravel 33% 22% 57% 56% 56% % Sand 27% 57% 56% 56% % Sand 27% 57% 56% 56% % Sand 27% 57% 5			6.3mm						
Size #8 2.36mm 58.0% 63.0% 63.0% 59.0% #10 2mm - - - - #16 1.18mm 52.0% 51.0% 48.0% 48.0% #30 0.6mm 47.0% 41.0% 40.0% 40.0% #40 0.425mm - - - - - #100 0.15mm 44.0% 32.0% - 22.0% 22.0% #100 0.15mm 41.0% 26.0% 22.0% 18.0% 18.0% DOTTSD Image: second secon									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				58.0%		63.0%			59.0%
	0126								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				47.0%		41.0%			40.0%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Sand % Sand % Silt & Clay % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u									
Liquid Limit Plastic IndexImage: marked state st		#200	0.075mm	40.0%		21.0%			18.0%
Plastic IndexImage: first original system of the system of t	DOTTSD								
Moisture Content % 14.2% 11.9% 2.9% 21.1% 22.3% 4.3% Organic Content % $ -$	Liquid Lin	nit							
Organic Content %Image: Single si	Plastic Ind	dex							
% Gravel33%22%end26%% Sand27%57%56%% Silt & Clay40%21%18%Max. Dry Density18%Opt. Moisture %Unconsol. Unconfined Triaxial UuCoeff. Of Consolidation CvUnc. Comp. Strength QuImage: Strength Qu<				14.2%	11.9%	2.9%	21.1%	22.3%	4.3%
% Sand $27%$ $57%$ $6%$ $56%$ $%$ Silt & Clay $40%$ $21%$ $21%$ $18%$ Max. Dry Density $-6%$ $-6%$ $-6%$ $18%$ Opt. Moisture % $-6%$ $-6%$ $-6%$ $-6%$ Unconsol. Unconfined Triaxial U _u $-6%$ $-6%$ $-6%$ $-6%$ Coeff. Of Consolidation C _v $-6%$ $-6%$ $-6%$ $-6%$ Unc. Comp. Strength Q _u $-6%$ $-6%$ $-6%$ $-6%$	Organic C	Content %							
% Silt & Clay40%21%18%Max. Dry DensityImage: Composity of the second se	% Gravel			33%		22%			26%
Max. Dry Density Opt. Moisture %Image: Max Dry Density Opt. Moisture % <td>% Sand</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>56%</td>	% Sand								56%
Opt. Moisture % Image: Construction of Constructin of Construction of Constructin of Constructin	% Silt & Clay			40%		21%			18%
Unconsol. Unconfined Triaxial U _u Image: Consolidation C _v <	Max. Dry Density								
Coeff. Of Consolidation C _v Image: Complex constraints Image: Complex constand to nothenits Image: Complex constand ton and	Opt. Moisture %								
Unc. Comp. Strength Q _u	Unconsol. Unconfined Triaxial U_u								
	Coeff. Of Consolidation C _v								
	-		Q.,						
			ŭ						

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By:

Elizabeth A. Karcheski

Depth		2.5	5	0	2.5	5	0
Test Hole No	lo.	B-057	B-057	B-058	B-058	B-058	B-059
Field Sample		S2	S3	S1	S2	S3	S1
Date Sample	ed	February 25, 2006	February 25, 2006	February 25, 2006	February 25, 2006	February 25, 2006	February 25, 2006
Lab No.		B-057S2	B-057S3	B-058S1	B-058S2	B-058S3	B-059S1
1 Percent Passing Sieve Size # # # # #	2" 50mm 1.5" 37.5mm 1" 25mm 0.75" 19mm 0.5" 12.5mm 0.375" 9.5mm 0.25" 6.3mm #4 4.75mm #8 2.36mm #16 1.18mm #30 0.6mm #40 0.425mm #50 0.3mm #100 0.15mm	100.0% 99.0% 97.0% 91.0% 85.0% 77.0% 67.0% 45.0% 28.0% 24.0%		100.0% 99.0% 98.0% 92.0% 81.0% 69.0% 59.0% 47.0% 38.0% 23.0%			100.0% 99.0% 97.0% 87.0% 73.0% 61.0% 51.0% 43.0% 36.0% 24.0%
DOTTSD Liquid Limit Plastic Index Moisture Co Organic Cor % Gravel % Sand % Silt & Clay Max. Dry De Opt. Moistur Unconsol. U Coeff. Of Co	x ontent % ntent % ensity re % Jnconfined Triaxial U _u onsolidation C _v . Strength Q _u	21.0% 30.0% 9% 70% 21%	21.5%	32.0% 7.2% 8% 59% 32%	91.3% 78%	85.4%	31.0% 5.0% 13% 56% 31%

TABLE B-2 Page 38 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By:

Elizabeth A. Karcheski

Depth			2.5	5	0	2.5	5	7.5
Test Hole			B-059	B-059	B-060	B-060	B-060	B-060
Field Sam			S2	S3	S1	S2	S3	S4
Date Sam	pled		February 25, 2006					
Lab No.			B-059S2	B-059S3	B-060S1	B-060S2	B-060S3	B-060S4
	3" 2" 1.5"	75mm 50mm 37.5mm						
	0.75"	25mm 19mm						
	0.75 0.5"	12.5mm			100.0%			
ь <i>і</i>	0.375"	9.5mm			98.0%			100.0%
Percent	0.25"	6.3mm						
Passing Sieve	#4	4.75mm			94.0%			99.8%
Size	#8	2.36mm			87.0%			99.5%
0120	#10	2mm						
	#16	1.18mm			79.0%			99.0%
	#30	0.6mm			72.0%			97.0%
	#40 #50	0.425mm 0.3mm			61.0%			82.0%
	#50 #100	0.3mm 0.15mm			46.0%			46.0%
	#100 #200	0.075mm			40.0%			33.0%
	#200	0.07 511111			+0.070			00.070
DOTTSD								
Liquid Lim Plastic Inc								
	Content %		26.2%	16.7%	9.2%	18.2%	23.9%	20.5%
Organic C			20.270	1011 /0	0.270	10.270	20.070	20.070
% Gravel					6%			0%
% Sand				54%			67%	
% Silt & Clay				40%			33%	
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C_v								
Unc. Com	Unc. Comp. Strength Q _u							
Pocket Pe		-						

TABLE B-2 Page 39 of 65

Sampled By: Steff Browne 32-1-01536-003 Depth 2.5 5 2.5 7.5 10 15 Test Hole No. B-061 B-061 B-061 B-062 B-061 B-061 Field Sample No. S3 S4 S5 S1 S1 S2 Date Sampled March 7, 2006 Lab No. B-061S1 B-061S2 B-061S3 B-061S4 B-061S5 B-062S1 3" 75mm 2" 50mm 1.5" 37.5mm 1" 25mm 0.75" 19mm 0.5" 12.5mm 0.375" 9.5mm Percent 0.25" 6.3mm Passing #4 4.75mm Sieve #8 2.36mm Size #10 2mm #16 1.18mm #30 0.6mm #40 0.425mm #50 0.3mm #100 0.15mm #200 0.075mm DOTTSD Liquid Limit Plastic Index Moisture Content % 20.8% 21.5% 21.7% 25.9% 23.7% 19.8% Organic Content % % Gravel % Sand % Silt & Clay 38% 43% 43% Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U_u Coeff. Of Consolidation C_v Unc. Comp. Strength Q_u Pocket Pen Value

Page 40 of 65

Knik Arm Bridge, Mat-Su Access Route

Project No.:

Project Name:

TABLE B-2

TABLE B-2 Page 41 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Steff Browne

Sampled By:

Depth		5	7.5	8.2	10	15	2.5
Test Hole No.		B-062	B-062	B-062	B-062	B-062	B-063
Field Sample No.		S2	S3a	S3b	S4	S5	S1
Date Sampled		March 7, 2006	March 7, 2006	March 7, 2006	March 7, 2006	March 7, 2006	March 7, 2006
Lab No.		B-062S2	B-062S3a	B-062S3b	B-062S4	B-062S5	B-063S1
3" 2" 1.5" 1.5" 0.75" 0.5" 0.375" 0.25" 9assing Sieve Size #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm						
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value		23.7% 40%	19.3%	21.2%	29 9 23.2%	20.3%	20.8%

TABLE B-2 Page 42 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By:

Steff Browne & Elizabeth A. Karcheski

Depth			5	7.5	10	15	20	2.5
Test Hole			B-063	B-063	B-063	B-063	B-063	B-065
Field Sam			S2	S3	S4	S5	S6	S1
Date Sam	pled		March 7, 2006	March 7, 2006	March 7, 2006	March 7, 2006	March 7, 2006	February 22, 2006
Lab No.			B-063S2	B-063S3	B-063S4	B-063S5	B-063S6	B-065S1
Percent Passing Sieve Size	1" 25m 0.75" 19m 0.5" 12.5 0.375" 9.5r 0.25" 6.3r #4 4.75 #8 2.36 #10 2mr #16 1.18 #30 0.6r #40 0.42 #50 0.3r #100 0.15	nm 5 5mm 1 5mm 5 5mm 5 5mm 5 5mm 5 5mm 1 5mm 1 8mm 1 8mm 1 25mm 1						
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u		-	19.6%	30 9 20.3%	22.1%	20.4%	21.5%	21.4%
Pocket Pe								

Project Name:

Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 43 of 65

Project No	D.:	32-1-01536	6-003	Sampled By:	Elizabeth A. Karcheski			
Depth			5	7.5	2.5	5	7.5	2.5
Test Hole			B-065	B-065	B-066	B-066	B-066	B-067
Field Sam			S2	S3	S1	S2	S3	S1
Date Sam	pled		February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006	February 22, 2006
Lab No.			B-065S2	B-065S3	B-066S1	B-066S2	B-066S3	B-067S1
	3"	75mm						
	2"	50mm						
	1.5"	37.5mm						
	1"	25mm		100.0%				
	0.75"	19mm		96.0%				
	0.5"	12.5mm		93.0%				
Percent	0.375"	9.5mm		92.0%				
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm		88.0%				
Size	#8	2.36mm		85.0%				
Size	#10	2mm						
	#16	1.18mm		82.0%				
	#30	0.6mm		79.0%				
	#40	0.425mm						
	#50	0.3mm		69.0%				
	#100	0.15mm		51.0%				
	#200	0.075mm		34.0%				
DOTTSD								
Liquid Lim								
Plastic Inc								
	Content %		10.5%	16.2%	13.8%	10.3%	19.6%	13.9%
Organic C	Content %			100/				
% Gravel				12%				
% Sand	Neur			54%				
% Silt & Clay			34%					
Max. Dry Density								
Opt. Moisture %								
	Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v							
		-						
	p. Strength	i Q _u						
Pocket Pe	en value							

TABLE B-2 Page 44 of 65

Project Name: Kr

Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Elizabeth A. Karcheski

Sampled By:

Depth			5	7.5	20	2.5	10	5
Test Hole	No.		B-067	B-067	B-067	B-068	B-068	B-069
Field Sam	nple No.		S2	S3	S6	S1	S4	S2
Date Sam	pled		February 22, 2006					
Lab No.			B-067S2	B-067S3	B-067S6	B-068S1	B-068S2	B-069S2
	3" 2"	75mm 50mm						
		37.5mm						
		25mm					100.0%	
	0.75"	19mm	100.0%		100.0%		97.0%	
	0.75	12.5mm	99.0%		99.0%		89.0%	
		9.5mm	99.0%		97.0%		87.0%	
Percent		6.3mm	33.070		57.076		07.078	
Passing		4.75mm	97.0%		91.0%		82.0%	
Sieve		2.36mm	95.0%		87.0%		77.0%	
Size		2.301111 2mm	33.070		07.070		11.070	
		1.18mm	94.0%		84.0%		73.0%	
		0.6mm	92.0%		81.0%		68.0%	
		0.425mm	02.070		01.070		00.070	
		0.3mm	87.0%		76.0%		58.0%	
		0.15mm	80.0%		68.0%		44.0%	
		0.075mm	72.0%		59.0%		33.0%	
DOTTSD								
Liquid Lim	nit							
Plastic Inc								
	Content %		15.1%	12.8%	13.3%	16.9%	12.3%	35.1%
Organic C	Content %							
% Gravel			3%		9%		18%	
% Sand			25%		31%		49%	
% Silt & Clay		72%		59%		33%		
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U								
Coeff. Of Consolidation C_v								
Unc. Comp. Strength Q _u								
Pocket Pe		~						

Project Name:

Pocket Pen Value

TABLE B-2 Page 45 of 65

2.5

S1

2.9%

Knik Arm Bridge, Mat-Su Access Route Sampled By: Project No.: 32-1-01536-003 Elizabeth A. Karcheski Depth 5 7.5 10 2.5 7.5 Test Hole No. B-069 B-069 B-070 B-070 B-070 B-071 Field Sample No. S1 S2 S3 S4 S3 Date Sampled February 22, 2006 February 24, 2006 Lab No. B-069S3 B-069S4 B-070S1 B-070S2 B-070S3 B-071S1 3" 75mm 2" 50mm 1.5" 37.5mm 1" 25mm 0.75" 19mm 0.5" 12.5mm 0.375" 9.5mm Percent 0.25" 6.3mm Passing #4 100.0% 4.75mm Sieve #8 2.36mm 99.9% Size #10 2mm #16 1.18mm 99.6% #30 0.6mm 99.0% #40 0.425mm 97.0% #50 0.3mm 94.0% #100 0.15mm 89.0% #200 0.075mm 87.0% DOTTSD Liquid Limit Plastic Index Moisture Content % 27.9% 18.5% 15.1% 18.2% 19.0% Organic Content % % Gravel 0% % Sand 13% % Silt & Clay 87% Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U Coeff. Of Consolidation C_v Unc. Comp. Strength Q_u

Project Name:

Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 46 of 65

Project N	0.:	32-1-01536	6-003	Sampled By:	Elizabeth A. Karcheski			
Depth			5	7.5	2.5	5	7.5	2.5
Test Hole			B-071	B-071	B-072	B-072	B-072	B-073
Field Sam			S2	S3	S1	S2	S3	S1
Date Sam	npled		February 24, 2006	February 24, 2006	February 24, 2006	February 24, 2006	February 24, 2006	February 24, 2006
Lab No.			B-071S2	B-071S3	B-072S1	B-072S2	B-072S3	B-073S1
Percent Passing Sieve	3" 2" 1.5" 1" 0.75" 0.5" 0.375" 0.25" #4	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm		100.0% 91.0% 87.0% 81.0% 75.0%				
Sieve Size	#8 #10 #30 #40 #50 #100 #200	2.36mm 2mm 1.18mm 0.6mm 0.425mm 0.3mm 0.3mm 0.15mm 0.075mm		51.0% 44.0% 38.0% 29.0% 19.0% 12.0%				
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content %		2.9%	5.8%	25.2%	19.9%	12.7%	10.0%	
% Gravel % Sand % Silt & Clay Max. Dry Density			40% 48% 12%					
	Opt. Moisture %							
•	Unconsol. Unconfined Triaxial U							
	Consolida	-						
		s _u						
Unc. Com Pocket Pe	np. Strengt en Value	th Q _u						

TABLE B-2 Page 47 of 65

Project No.: Sampled By: 32-1-01536-003 Elizabeth A. Karcheski Depth 5 2.5 7.5 7.5 20 5 Test Hole No. B-073 B-073 B-073 B-074 B-074 B-074 Field Sample No. S6 S1 S2 S3 S2 S3 Date Sampled February 24, 2006 February 24, 2006 February 24, 2006 February 27, 2006 February 27, 2006 February 27, 2006 Lab No. B-073S2 B-073S3 B-073S4 B-074S1 B-074S2 B-074S3 3" 75mm 2" 50mm 1.5" 37.5mm 1" 25mm 0.75" 19mm 0.5" 12.5mm 0.375" 9.5mm Percent 0.25" 6.3mm Passing #4 4.75mm Sieve #8 2.36mm Size #10 2mm #16 1.18mm #30 0.6mm #40 0.425mm #50 0.3mm #100 0.15mm #200 0.075mm DOTTSD Liquid Limit Plastic Index Moisture Content % 8.5% 10.6% 16.3% 5.0% 6.1% 6.0% Organic Content % % Gravel % Sand % Silt & Clay 78% Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U Coeff. Of Consolidation C_v Unc. Comp. Strength Q_u Pocket Pen Value

Project Name:

Knik Arm Bridge, Mat-Su Access Route

Project Name: Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 48 of 65

Project No.: 32-1-01536		5-003	Sampled By:	Elizabeth A. Karcheski				
Field San	Test Hole No. Field Sample No. Date Sampled		10 B-074 S4 February 27, 2006 B-074S4	2.5 B-075 S1 February 27, 2006 B-075S1	5 B-075 S2 February 27, 2006 B-075S2	7.5 B-075 S3 February 27, 2006 B-075S3	2.5 B-076 S1 February 27, 2006 B-076S1	5 B-076 S2 February 27, 2006 B-076S2
Percent Passing Sieve Size	3" 2" 1.5" 1" 0.75" 0.5" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm	100.0% 86.0% 82.0% 75.0% 70.0% 59.0% 52.0% 47.0% 42.0% 35.0% 28.0% 22.0%					
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value		5.0% 41% 38% 22%	2.4%	2.4%	6.2%	2.5%	2.9%	

TABLE B-2 Page 49 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By:

Elizabeth A. Karcheski

Depth			7.5	2.5	5	7.5	35	2.5
Test Hole No.		B-076	B-077	B-077	B-077	B-077	B-078	
Field Sam			S3	S1	S2	S3	S9	S1
Date Sam	pled		February 27, 2006	February 27, 2006	February 27, 2006	February 27, 2006	February 27, 2006	February 28, 2006
Lab No.			B-076S3	B-077S1	B-077S2	B-077S3	B-077S9	B-078S1
Percent Passing Sieve Size	2" 5 1.5" 3 1" 2 0.75" 1 0.5" 1 0.375" 9 0.25" 6 #4 4 #8 2 #10 2 #16 1 #30 0 #40 0 #50 0	75mm 60mm 87.5mm 25mm 2.5mm 2.5mm 2.36mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.3mm	100.0% 87.0% 82.0% 75.0% 71.0% 62.0% 54.0% 47.0% 41.0% 34.0% 26.0%			100.0% 85.0% 76.0% 72.0% 68.0% 60.0% 54.0% 48.0% 43.0% 37.0% 30.0%	100.0% 97.0% 91.0% 85.0% 82.0% 75.0% 70.0% 66.0% 62.0% 54.0% 43.0%	
	#200 0).075mm	20.0%			24.0%	34.0%	
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture %		5.2% 38% 42% 20%	8.4%	10.3%	6.3% 40% 36% 24%	6.7% 25% 41% 34%	15.5%	
Unconsol. Unconfined Triaxial U_u								
Coeff. Of Consolidation C_v								
	p. Strength Q	u						
Pocket Pe	n Value							

TABLE B-2 Page 50 of 65

Sampled By: Project No.: 32-1-01536-003 Elizabeth A. Karcheski Depth 5 5 2.5 7.5 2.5 7.5 Test Hole No. B-078 B-078 B-079 B-079 B-080 B-079 Field Sample No. S1 S2 S1 S2 S3 S3 Date Sampled February 28, 2006 February 28, 2006 March 1, 2006 March 1, 2006 March 1, 2006 March 1, 2006 Lab No. B-078S2 B-078S3 B-079S1 B-079S2 B-079S3 B-080S1 3" 75mm 2" 50mm 1.5" 37.5mm 1" 25mm 100.0% 0.75" 19mm 93.0% 0.5" 12.5mm 88.0% 0.375" 9.5mm 84.0% Percent 0.25" 6.3mm Passing #4 4.75mm 70.0% Sieve #8 2.36mm 60.0% Size #10 2mm #16 1.18mm 53.0% #30 0.6mm 47.0% #40 0.425mm #50 0.3mm 39.0% #100 0.15mm 31.0% #200 0.075mm 24.0% DOTTSD Liquid Limit Plastic Index Moisture Content % 6.4% 9.9% 6.4% 7.7% 6.7% 5.5% Organic Content % % Gravel 30% % Sand 47% % Silt & Clay 24% Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U Coeff. Of Consolidation C_v Unc. Comp. Strength Q_u Pocket Pen Value

Knik Arm Bridge, Mat-Su Access Route

Project Name:

SOILS TESTING REPORT

Project Name:

Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 51 of 65

Project No.: 32-1-01536		-003	Sampled By:	Elizabeth A. Karcheski				
Depth			5	10	25	2.5	5	7.5
Test Hole			B-080	B-080	B-080	B-081	B-081	B-081
Field Sam			S2	S4	S7	S1	S2	S3
Date Sam	pled		March 1, 2006	March 1, 2006	March 1, 2006	March 1, 2006	March 1, 2006	March 1, 2006
Lab No.			B-080S2	B-080S4	B-080S7	B-081S1	B-081S2	B-081S3
	3"	75mm						
	2"	50mm						
	1.5"	37.5mm			100.0%			
	1"	25mm			99.9%			
	0.75"	19mm			94.0%			
	0.5"	12.5mm			88.0%			
Percent	0.375"	9.5mm			82.0%			
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm			69.0%			
Size	#8	2.36mm			61.0%			
0.20	#10	2mm						
	#16	1.18mm			55.0%			
	#30	0.6mm			49.0%			
	#40	0.425mm						
	#50	0.3mm			41.0%			
	#100	0.15mm			32.0%			
	#200	0.075mm			24.0%			
DOTTSD								
Liquid Lim								
Plastic Inc								
Moisture (6.2%	6.8%	4.3%	10.5%	7.9%	3.8%
Organic C	content %							
% Gravel					31%			
% Sand					45%			
% Silt & C					24%			
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of	Consolidati	ion C _v						
Unc. Com	p. Strength	n Q _u						
Pocket Pe								

TABLE B-2 Page 52 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Sampled By: E

Elizabeth A. Karcheski & Steff Browne

Depth			20	30	2.5	5	7.5	10
Test Hole No.		B-081	B-081	B-082	B-082	B-082	B-082	
Field Sam	ple No.		S6	S8	S1	S2	S4	S6
Date Sam	pled		March 1, 2006	March 1, 2006	March 2, 2006	March 2, 2006	March 2, 2006	March 2, 2006
Lab No.			B-081S6	B-081S8	B-082S1	B-082S2	B-082S4	B-082S6
		75mm 50mm						
		37.5mm	100.0%					100.0%
		25mm	96.0%	100.0%				93.0%
		9mm	92.0%	94.0%				86.0%
		2.5mm	83.0%	94.0%				81.0%
		9.5mm	79.0%	87.0%				77.0%
Percent		5.3mm	79.0%	07.0%				11.0%
Passing		1.75mm	67.0%	79.0%				68.0%
Sieve		2.36mm	60.0%	74.0%				61.0%
Size		2.301111 2mm	00.0%	74.0%				01.0%
		.18mm	54.0%	69.0%				56.0%
).6mm	48.0%	64.0%				51.0%
).425mm	40.0%	04.0%				51.0%
).425mm	41.0%	56.0%				45.0%
).15mm	32.0%	44.0%				36.0%
).075mm	24.0%	34.0%				27.0%
	#200 0	J.075mm	24.07	34.0 %				21.070
DOTTSD								
Liquid Lim								
Plastic Inc								
Moisture (5.5%	7.4%	7.2%	7.4%	7.2%	6.4%
Organic C	Content %							
% Gravel			33%	21%				32%
% Sand			43%	45%				41%
% Silt & Clay		24%	34%				27%	
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U_u								
Coeff. Of Consolidation C_v								
Unc. Com	p. Strength Q	u						
Pocket Pe		ч ч						

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Steff Browne

Sampled By:

Depth			2.5	5	7.5	10	15	20
Test Hole No.		B-083	B-083	B-083	B-083	B-083	B-083	
Field Sample No.		S1	S2	S3	SB1	S5	S6	
Date Sam	npled		March 3, 2006	March 3, 2006	March 3, 2006	March 3, 2006	March 3, 2006	March 3, 2006
Lab No.			B-083S1	B-083S2	B-083S3	B-083SB1	B-083S5	B-083S6
Percent Passing Sieve Size	3" 2" 1.5" 1" 0.75" 0.375" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #100	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.425mm 0.3mm 0.15mm				100.0% 98.0% 90.0% 86.0% 74.0% 67.0% 63.0% 59.0% 52.0% 43.0%		100.0% 89.0% 84.0% 78.0% 72.0% 59.0% 48.0% 39.0% 31.0% 22.0% 15.0%
DOTTSD Liquid Lin		0.075mm			_	35.0%		11.0%
Plastic In								
Moisture	Content %		15.7%	25.1%	12.7%	10.2%	6.2%	4.3%
	Content %							
% Gravel						26%		41%
% Sand						39%		48%
% Silt & Clay				41%	35%		11%	
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C_v								
	np. Strength							
Pocket Pe		°u						

TABLE B-2 Page 53 of 65

TABLE B-2 Page 54 of 65

Project Name: Knik Arm Bri

Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Steff Browne

Sampled By:

Depth		25	30	35	40	40.5	2.5
Test Hole No.		B-083	B-083	B-083	B-083	B-083	B-084
Field Sample No.		S7	S8	S9	S10a	S10b	S1
Date Sampled		March 3, 2006					
Lab No.		B-083S7	B-083S8	B-083S9	B-083S10a	B-083S10b	B-084S1
3" 2" 1.5" 1" 0.75" 0.5" 0.375" 0.25" #4 Sieve Size #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm						
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value		6.0%	5.8%	7.6%	8.9% 35%	6.5%	8.4%

Knik Arm Bridge, Mat-Su Access Route

Project No.:

Project Name:

32-1-01536-003

Steff Browne

Sampled By:

Depth			5	7.5	10	15	20	25
Test Hole No.		B-084	B-084	B-084	B-084	B-084	B-084	
Field Sample No.		S2	S3	S4	S5	S6	S7	
Date San	npled		March 3, 2006	March 3, 2006	March 3, 2006	March 3, 2006	March 3, 2006	March 3, 2006
Lab No.			B-084S2	B-084S3	B-084S4	B-084S5	B-084S6	B-084S7
Percent Passing Sieve Size	3" 2" 1.5" 1.5" 0.75" 0.375" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm	100.0% 87.0% 80.0% 72.0% 57.0% 44.0% 34.0% 25.0% 17.0% 11.0% 8.0%			100.0% 96.0% 90.0% 83.0% 79.0% 74.0% 69.0% 64.0% 59.0% 51.0% 40.0% 30.0%		100.0% 96.0% 86.0% 83.0% 75.0% 69.0% 64.0% 59.0% 51.0% 40.0% 31.0%
DOTTSD Liquid Lir Plastic In	nit							
Moisture	Content % Content %		2.5%	4.4%	6.9%	7.4%	8.0%	7.5%
% Gravel			43%			26%		25%
% Sand			49%			44%		43%
% Silt & Clay		8%			30%		31%	
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U								
Coeff. Of Consolidation C_v								
		-						
	np. Strengt	n Q _u						
Pocket P	en Value							

TABLE B-2

Page 55 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Steff Browne

Field Sami E S8 S9 S10 S1 S2 S3 Date Sami E March 3, 2006 March 3, 2006 March 3, 2006 March 3, 2006 March 6, 2006 B-085S1	Depth			30	35	40	2.5	5	7.5
Date Sampled March 3, 2006 March 6, 2006 March 6, 2006 March 6, 2006 B-085S1 B-085S2 B-085S3 Lab No. 5'' 75mm 50mm 1.0' 100.0% B-084S10 B-085S1 B-085S2 B-085S3 2'' 50mm 100.0% 100.0% 100.0% 100.0% 100.0% 1.5' 37.5mm 100.0% 100.0% 100.0% 100.0% 93.0% 0.75'' 19mm 68.0% 100.0% 100.0% 93.0% 93.0% 0.25'' 6.3mm 76.0% 100.0% 100.0% 93.0% 93.0% 5ize #4 4.75mm 68.0% 10.0 10.0% 97.0% 0.25'' 0.3mm 68.0% 10.0 10.0% 75.0% 10.2 0.425mm 4.75mm 68.0% 10.0 10.0% 37.0% 10.0 0.5mm 32.0% 10.0% 10.0% 37.0	Test Hole No.				B-084	B-085			
Date Sampled March 3, 2006 B-084S10 B-085S1 B-085S2 B-085S3 3° 75mm 2' 50mm 100.0% B-084S10 B-085S1 B-085S2 B-085S3 1.5° 37.5mm 100.0% E E E 100.0% E E 100.0% E </td <td colspan="2">Field Sample No.</td> <td>S8</td> <td>S9</td> <td>S10</td> <td>S1</td> <td>S2</td> <td>S3</td>	Field Sample No.		S8	S9	S10	S1	S2	S3	
3" 75mm 60mm 100.0% 1.5" 37.5mm 100.0% 100.0% 1.5" 37.5mm 100.0% 100.0% 0.75" 12.5mm 95mm 93.0% 0.375" 9.5mm 88.0% 93.0% 0.375" 9.5mm 87.0% 88.0% 0.375" 9.5mm 87.0% 88.0% 2.36mm 80.0% 82.0% 87.0% 0.375" 9.5mm 75.0% 87.0% 87.0% 1.37 10mm 68.0% 77.0% 79.0% #10 2.36mm 60.0% 77.0% 75.0% #10 2.36mm 60.0% 77.0% 75.0% #10 2.30mm 60.0% 77.0% 75.0% #10 2.30mm 50.0% 77.0% 75.0% #10 2.30mm 43.0% 75.0% 75.0% #200 0.075mm 24.0% 71.0% 71.0% Vigituit Idelut 13.9% 6.4% <td>Date San</td> <td>npled</td> <td></td> <td>March 3, 2006</td> <td>March 3, 2006</td> <td>March 3, 2006</td> <td>March 6, 2006</td> <td>March 6, 2006</td> <td>March 6, 2006</td>	Date San	npled		March 3, 2006	March 3, 2006	March 3, 2006	March 6, 2006	March 6, 2006	March 6, 2006
2" 50mm 100 1000% 1000% 1000% $1.5'$ 37.5mm 1000% 97.0% 1000% 93.0% $0.75'$ 19mm 88.0% 1000% 93.0% $0.75'$ 19mm 88.0% 1000% 93.0% $0.75'$ 9.5mm 6.3mm 80.0% 89.0% $0.25''$ 6.3mm 66.0% 1000% 82.0% $0.25''$ 6.3mm 60.0% 1000% 82.0% $0.25''$ 6.3mm 60.0% 1000% 75.0% 88 2.36mm 60.0% 1000% 75.0% 100 2mm 50.0% 1000 75.0% 16 1.8mm 55.0% 1000 71.0% 43.0 0.6mm 33.0% 1000 37.0% 200 0.3mm 43.0% 10.1% 10.1% 4100 0.15mm 33.0% 1000 37.0% DOTTSD 13.9% 6.4% 10.1% 5	Lab No.			B-084S8	B-084S9	B-084S10	B-085S1	B-085S2	B-085S3
h 37.5m 100.0% 100.0% 100.0% 100.0% 0.75' 19mm 97.0% 1 100.0% 33.0% 0.75' 19mm 88.0% 1 4 93.0% 0.75' 12.5mm 12.5mm 81.0% 1 88.0% 88.0% 0.378'' 9.5mm 12.5mm 6.3mm 76.0% 1 87.0% 0.375'' 6.3mm 6 68.0% 1 1 87.0% 1025'' 8.3mm 68.0% 1 1 82.0% 104 17mm 68.0% 1 1 79.0% #10 2mm 60.0% 1 1 79.0% #10 2mm 55.0% 1 1 71.0% #40 0.425mm 1 1 71.0% 1 #40 0.425mm 1 33.0% 1 1 1 100 0.75mm 24.0% 10.1% 5.7% 13.8% 8.4% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					100.0%				
Percent 0.5 [°] 19mm 12.5mm Imm 12.5mm 11.5mm 11.5mm 93.0% 0.375 [°] 9.5mm 1.0 81.0% 1 89.0% 0.375 [°] 9.5mm 1 76.0% 1 88.0% 0.57 [°] 6.3mm 1 66.0% 1 87.0% 86.0% 1 66.0% 1 88.0% 88.0% #4 2.5mm 6.3mm 66.0% 1 87.0% #4 2.5mm 6.3mm 60.0% 1 87.0% #4 2.5mm 6.3mm 66.0% 1 79.0% #50 0.6mm 60.0% 1 71.0% 75.0% #30 0.6mm 55.0% 1 61.0% 61.0% #40 0.425mm 1 30.0% 1 61.0% #100 0.5mm 1 33.0% 1 48.0% Pasic Index 13.9% 6.4% 10.1% 5.7% 13.8% 8.4% Organ		1.0							100.0%
		0.75"							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
ransing #4 4.75mm 68.0% 68.0% 68.0% 68.0% 68.0% 68.0% 68.0% 79.0% 82.0% Size #8 2.36mm 60.0% 1 60.0% 1 79.0% 79.0% #10 Zmm Comm 55.0% 1 1 75.0% 75.0% #30 0.6mm 55.0% 1 1 75.0% 71.0% #30 0.6mm 50.0% 1 1 75.0% 71.0% #40 0.425mm 50.0% 1 1 75.0% 71.0% #50 0.3mm 43.0% 1 1 71.0% 71.0% #100 0.15mm 33.0% 24.0% 1 1 81.0% 37.0% DOTTSD Image: Stand S					10.070				01.070
Sieve #10 #10 #10 #10 #10 #112.36mm 2.mm60.0% 60.0%79.0% 79.0%#10 		#4			68.0%				82.0%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Size				00.070				10.070
					55.0%				75.0%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					43.0%				61.0%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Liquid Limit Plastic IndexImage: marked state st		#200	0.075mm						
Plastic IndexImage: content %Image:	DOTTSD								
Moisture Content % 13.9% 6.4% 10.1% 5.7% 13.8% 8.4% Organic Content %	Liquid Lin	nit							
Organic Content %Image: Marking Marki	Plastic In	dex							
% Gravel $32%$ Image: marked base in the second sec	Moisture	Content %		13.9%	6.4%	10.1%	5.7%	13.8%	8.4%
% Sand43%146% $%$ Silt & Clay24%48%37%Max. Dry Density11137%Opt. Moisture %1111Unconsol. Unconfined Triaxial Uu1111Coeff. Of Consolidation Cv1111Unc. Comp. Strength Qu11111	Organic (Content %							
% Silt & Clay24%48%37%Max. Dry DensityImage: Construct on the system of	% Gravel								18%
Max. Dry Density Opt. Moisture %Image: Max Dry Density Opt. Density Opt. Moisture %Image: Max Dry Density Opt. Moisture %Image: Max Dry Density Opt. Density Op	% Sand								
Opt. Moisture % Image: Construction of the second seco	% Silt & Clay			24%		48%		37%	
Unconsol. Unconfined Triaxial Uu Image: Consolidation Cv Image: Consolidat	Max. Dry Density								
Coeff. Of Consolidation C _v Image: Coeff. Of Consolidation C _v Image: Coeff. Of Consolidation C _v Image: Coeff. Of Coef	Opt. Moisture %								
Unc. Comp. Strength Q _u	Unconsol. Unconfined Triaxial U _u								
	Coeff. Of Consolidation C _v								
	Unc. Con	np. Strenat	h Q _u						
			^z u						

Page 56 of 65

TABLE B-2

Sampled By:

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Steff Browne

Sampled By:

Depth Test Hole No. Field Sample No			10	15	2.5	5	7.5	10
			B-085	B-085	B-086	B-086	B-086	B-086
Field Sample No.		S4	S5	S1	S2	S3	S4	
Date Sampled		March 6, 2006	March 6, 2006	March 6, 2006	March 6, 2006	March 6, 2006	March 6, 2006	
Lab No.			B-085S4	B-085S5	B-086S1	B-086S2	B-086S3	B-086S4
Percent Passing Sieve Size	1.5" 1" 0.75" 0.375" 0.25" #4 #8 #10 #16 #30 #40 #50 #100	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm				100.0% 98.0% 97.0% 94.0% 90.0% 86.0% 78.0% 66.0% 52.0% 40.0%		
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u		Triaxial Uu n Cv	7.3% 34%	8.0%	50.3% 16%	38.2% 6% 54% 40%	34.5%	9.4% 44%
Pocket Pen Value								

TABLE B-2 Page 57 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Steff Browne

Sampled By:

Field Samule No. S5 S1 S2 S3 S4 S5 Date Samule Samule Carbon March 6,2006 March 6,206 March 6,206 <t< th=""><th colspan="3">Depth Test Hole No. Field Sample No.</th><th>15</th><th>2.5</th><th>5</th><th>7.5</th><th>10</th><th>15</th></t<>	Depth Test Hole No. Field Sample No.			15	2.5	5	7.5	10	15
Date SamJu March 6, 2006 B-087S3 B-087S3 B-087S4 B-087S5 standard Somm Image:	Field Sample No.			B-086	B-087	B-087	B-087	B-087	B-087
Lab No. B-08655 B-087S1 B-087S2 B-087S3 B-087S4 B-087S5 s 5mm 1 5mm 1 5mm 1 <t< td=""><td colspan="3"></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
3" 75mm 20mm 2									
Percent 1.° Somm 37.5° Somm 25.0° Somm 37.5° Somm 3	Lab No.	Lab No.		B-086S5	B-087S1	B-087S2	B-087S3	B-087S4	B-087S5
1.5° 37.5mm Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Instrument Instrument Instrument Instrument Instrument 0.75" 19.mm Instrument Instrument Instrument Instrument 0.375" 9.5mm Instrument Instrument Instrument Instrument 100 0.5mm Instrument Instrument Instrument Instrument #10 200 0.5mm Instrument Instrument Instrument Instrument Plastic Index Instrument Instrument Instrument Instrument Instrument Noisture Content % Instrument Instrument Instrument Instrument Instrument % Site Clarer Instrument									
Percent 0.75" 19mm Image <							400.00/		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Percent Passing Sieve Size 0.375" (2.5° 6.3mm (3.75 m) 9.5mm (5.3mm (3.75 m) 9.5mm (5.3mm) 9.5									
	Percent						87.0%		
Siève Siève #10#8 2.36mm 4102.36mm 2mmInternational International Participa	Passing						00.00/		
S129 #10 2mm interms interms interms interms #16 1.18mm interms interms interms interms interms #30 0.6mm interms interms interms interms interms #40 0.425mm interms interms interms interms interms #50 0.3mm interms interms interms interms interms #100 0.15mm interms interms interms interms interms #100 0.5mm interms interms interms interms interms bittig interms interms interms interms interms interms Plastic Index interms interms interms interms interms Viggin interms <td< td=""><td>Sieve</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Sieve								
#16 1.18mm Image: straight of the straight of th	Size						74.0%		
#30 #40 0.425mm #50 0.3mm #2000.6mm 0.425mm 0.15mmImage of the second se							60.0%		
#40 #50 #100 #2000.425mm 0.3mm 100 0.15mm #200Image of the constraint of th									
							04.0%		
							55.0%		
$\begin{array}{ c c c c } & \#200 & 0.075 \text{mm} & \hline \end{tabular} & \hline tab$									
DOTTSD Liquid Limit Plastic IndexImage: second secon									
Liquid Limit Plastic IndexImage: marked state sta			0.07511111				29.078		
Plastic IndexImage: style in the style in th									
Moisture Content % 14.2% 14.7% 12.5% 8.9% 9.8% 10.2% Organic Content % $ -$									
Organic Content %Image: Mathematic Scheme Schem									
% Gravel % SandImage: second			14.2%	14.7%	12.5%	8.9%	9.8%	10.2%	
% SandImage: Sand Single S									
% Silt & Clay37%29%36%Max. Dry DensityImage: Construct on the second sec									
Max. Dry Density Opt. Moisture %Image: Construct of the second s									
Opt. Moisture % Image: Construction of the second seco				37%		29%	36%		
Unconsol. Unconfined Triaxial U uImage: Consolidation C vImage: Consolidation C<									
Coeff. Of Consolidation Cv Image: Complexity of Consolidation Cv Image: Complexity of									
Unc. Comp. Strength Qu									
	Coeff. Of Consolidation C _v								
	Pocket Pen Value								

TABLE B-2 Page 58 of 65

TABLE B-2 Page 59 of 65

Project No.:

Project Name:

Knik Arm Bridge, Mat-Su Access Route

32-1-01536-003

Sampled By:

Steff Browne

Depth Test Hole No.			2.5	5	7.5	10	15	20
			B-088	B-088	B-088	B-088	B-088	B-088
Field Sample No.		S1	S2	S3	S4	S5	S6	
Date Sampled		February 17, 2006	February 17, 2006	February 17, 2006	February 17, 2006	February 17, 2006	February 17, 2006	
Lab No.			B-088S1	B-088S2	B-088S3	B-088S4	B-088S5	B-088S6
Percent Passing Sieve Size	2" 5 1.5" 3 1" 2 0.75" 1 0.5" 1 0.375" 9 0.25" 6 #4 4 #8 2 #10 2 #16 1 #30 0 #40 0 #50 0	25mm 25mm 25mm 25mm 2.5mm 2.5mm 2.5mm 2.5mm 2.36mm 2.36mm 2.36mm 2.36mm 0.425mm 0.425mm 0.3mm 0.3mm 0.15mm		100.0% 94.0% 88.0% 85.0% 81.0% 77.0% 74.0% 70.0% 59.0% 38.0%			100.0% 98.0% 94.0% 93.0% 90.0% 87.0% 84.0% 80.0% 70.0% 55.0%	
	#200 0).075mm		25.0%			42.0%	
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v		C _v	9.3% 32%	13.0% 19% 56% 25%	12.7%	8.0%	11.1% 10% 48% 42%	10.3% 40%
Unc. Comp. Strength Q _u Pocket Pen Value								

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Steff Browne

Sampled By:

Lab No. B-08857 B-08858 B-08859 B-089S1 B-089S2 B-089S3 3* 75mm				25	35	40	2.5	5	7.5
Date Sampled Lab No February 17, 2006 February 17, 200 February 1	Test Hole	No.							
Lab No. B-08857 B-08858 B-08859 B-08951 B-08952 B-08953 3^{+}_{-} 75mm -									
3° 75mm 1.5° 37.5mm 100.0% 1.5° 37.5mm 9.0% 90.0% 90.0% 0.75° 19mm 90.0% 90.0% 90.0% 0.5° 12.5mm 9.5mm 9.5mm 90.0% 90.0% 0.5° 12.5mm 9.5mm 9.5mm 9.5mm 9.5mm 9.5mm Size 44 4.75mm 6.3mm 76.0% 9.0% 9.0% #10 2mm 6.3mm 68.0% 9.0% 9.0% 9.0% #4 4.75mm 6.3mm 75.0% 9.5mm								February 17, 2006	
$ \begin{array}{ c c c c c c } & 2^{\circ} & 50m & m & m & m & m & m & m & m & m & m &$	Lab No.	Lab No.		B-088S7	B-088S8	B-088S9	B-089S1	B-089S2	B-089S3
Liquid Limit 37 Image: second	Passing Sieve	2" 50 1.5" 37 1" 25 0.75" 12 0.5" 12 0.375" 9. 0.25" 6. #4 4. #8 2. #10 2r #16 1. #30 0. #40 0. #50 0. #100 0.	0mm 7.5mm 5mm 2.5mm 2.5mm .3mm .36mm .36mm .18mm .6mm .425mm .3mm .15mm				96.0% 92.0% 90.0% 86.0% 76.0% 68.0% 60.0% 50.0% 32.0% 20.0%		
	Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u			16 17.1%	20.4%	21.6%	24% 62%	11.7%	19.1%

TABLE B-2 Page 60 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Steff Browne

Sampled By:

Depth Test Hole No.			10	20	0.5	2.5	5	7.5
Test Hole	e No.		B-089	B-089	B-090	B-090	B-090	B-090
Field Sample No.		S4	S 5	SB1	S1	S3	S4	
Date Sampled		February 17, 2006	February 17, 2006	February 17, 2006	February 17, 2006	February 17, 2006	February 17, 2006	
Lab No.		B-089S4	B-089S5	B-090SB1	B-090S1	B-090S3	B-090S4	
Percent Passing Sieve Size	3" 2" 1.5" 1" 0.75" 0.375" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm			100.0% 99.0% 97.0% 90.0% 85.0% 69.0% 58.0% 49.0% 41.0% 30.0% 19.0% 13.0%			
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density			15.9%	9.8%	0.7% 31% 56% 13%	10.8% 24%	9.8%	10.5% 38%
Opt. Moisture % Unconsol. Unconfined Triaxial U_u Coeff. Of Consolidation C_v Unc. Comp. Strength Q_u Pocket Pen Value								

TABLE B-2 Page 61 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No .:

32-1-01536-003

Steff Browne

Sampled By:

Depth Test Hole No. Field Sample No.			10	2.5	5	40	45	20
			B-090	B-091	B-091	B-091	B-091	B-091
Field Sample No.		S5	S1	S2	S3	S4	S5	
Date Sampled		February 17, 2006	February 16, 2006					
Lab No.		B-090S5	B-091S1	B-091S2	B-091S3	B-091S4	B-091S5	
	3" 2"	75mm 50mm						
	1.5"	37.5mm						
	1"	25mm				100.0%		
	0.75"	19mm				96.0%		
	0.5"	12.5mm				90.0%		
Percent	0.375"	9.5mm				87.0%		
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm				80.0%		
Size	#8	2.36mm				75.0%		
0120	#10	2mm						
	#16	1.18mm				70.0%		
	#30	0.6mm				65.0%		
	#40	0.425mm						
	#50	0.3mm				55.0%		
	#100	0.15mm				42.0%		
	#200	0.075mm				31.0%		
DOTTSD								
Liquid Lim								
Plastic Index								
Moisture Content %		17.1%	885.8%	305.6%	15.5%	11.2%	27.1%	
Organic Content %								
% Gravel					20%			
% Sand					50%			
% Silt & Clay					31%			
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C_v								
Unc. Comp. Strength Q _u								
Pocket Pen Value								

TABLE B-2 Page 62 of 65

Project Name: Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 63 of 65

Project No.:

32-1-01536-003

Steff Browne

Sampled By:

Depth Test Hole No.			25	26.3	2.5	5	7.5	10
		B-091	B-091	B-092	B-092	B-092	B-092	
Field Sample No.		S6a	6b	S1	S2	S3	S4	
Date Sampled		February 16, 2006						
Lab No.		B-091S6a	B-091S6b	B-092S1	B-092S2	B-092S3	B-092S4	
		75mm 50mm						
		37.5mm						
		25mm				100.0%		
		19mm				94.0%		
		12.5mm				92.0%		
_		9.5mm				91.0%		
Percent		6.3mm						
Passing Sieve	#4	4.75mm				87.0%		
Size		2.36mm				84.0%		
OIZE		2mm						
		1.18mm				81.0%		
		0.6mm				78.0%		
		0.425mm						
		0.3mm				69.0%		
		0.15mm				55.0%		
	#200	0.075mm				42.0%		
DOTTSD								
Liquid Lim			171	169				
Plastic Inc			105	103				
Moisture Content %		167.6%	195.2%	7.6%	10.4%	11.6%	10.7%	
Organic Content %					400/			
% Gravel % Sand					13% 44%			
% Sand % Silt & Clay					44%			
Max. Dry Density					42 /0			
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C_v								
Unc. Comp. Strength Q_{μ}								
Pocket Pe		ŭ						

Project Name: Knik Arm Bridge, Mat-Su Access Route

TABLE B-2 Page 64 of 65

Project No.:

32-1-01536-003

Sampled By: Steff Browne

Lab No. Image: stype of the stype of th	Depth			15	20	2.5	5	7.5	10
Date Sampled Lab No February 16, 2006 B-092S6 B-093S1 B-093S2 B-093S3 B-093S4 B-0									B-093
Lab No. Image: stype of the stype of th					S6				
3" 75mm 2mm 50mm 2mm 50mm 2mm 2mm </td <td colspan="2">Date Sampled</td> <td>February 16, 2006</td>	Date Sampled		February 16, 2006						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lab No.			B-092S5	B-092S6	B-093S1	B-093S2	B-093S3	B-093S4
1^{*} 25mm 100.0% 100.0% 100.0% 100.0% 0.5' 12.5mm 98.0% 88.0% 84.0% 100.0% 0.375' 9.5mm 88.0% 84.0% 84.0% 100.0% 0.375' 9.5mm 88.0% 84.0% 84.0% 100.0% 0.25' 6.3mm 88.0% 75.0% 100.0% 100.0% 0.25'' 6.3mm 83.0% 75.0% 100.0% 100.0% 0.25'' 6.3mm 80.0% 75.0% 100.0% 100.0% #10 2.3mm 80.0% 68.0% 100.0% 100.0% #10 2.3mm 80.0% 63.0% 100.0% 100.0% #10 0.25mm 72.0% 100.0% 100.0% 100.0% #200 0.3mm 64.0% 27.0% 27.0% 100.0% Liquid Limit 1.5.0% 9.8% 6.9% 6.9% 7.3% Plastic Index 9.9% 8.5% 9.8% 6.9%		2"	50mm						
No.75" 19mm 94.0% (100.0%) (100.0%) 0.57" 12.5m 90.0% 88.0% (100.0%) 0.375" 9.5m 88.0% (100.0%) (100.0%) 0.55" 6.3m 4.75m 88.0% (100.0%) (100.0%) Sive 4.75m 83.0% (100.0%) (100.0%) (100.0%) Sive 4.75m 83.0% (100.0%) (100.0%) (100.0%) Sive 4.75m 88.0% (100.0%) (100.0%) (100.0%) #10 0.6mm 72.0% (100.0%) (100.0%) (100.0%) #40 0.425mm (100.0%) (100.0%) (100.0%) (100.0%) DOTTSD Image: Singer Content % Singer Content % (100.0%) (100.0%) (100.0%) Pastic Index Image: Singer Content % 9.9% 8.5% 9.8% 6.9% 6.9% 7.3% Organic Content % Image: Singer Content % Image: Singer Content % Image: Singer Content % (100.0%) (100.0%)				100.0%					
		-					100.0%		
Percent Passing Sieve Sieve 0.375" (C.5") 0.5mm (C.5") 88.0% (C.5") 1 84.0% (C.5") 1 <th1< th=""> 1 1 <</th1<>									
Percent Passing Sieve Size 0.25" 6.3mm 44 1.75mm 83.0% 1 75.0% 1 Sieve Size $\frac{4}{4}$ 2.36mm $\frac{10}{2}$ 80.0% 6 68.0% 1 1 Size $\frac{4}{10}$ 2mm $\frac{10}{10}$ 80.0% 6 68.0% 1 1 $\frac{10}{10}$ 2mm $\frac{10}{10}$ 76.0% 68.0% 1 1 1 $\frac{10}{10}$ 2mm $\frac{10}{10}$ 72.0% 63.0% 1 1 1 $\frac{10}{10}$ 0.45mm $\frac{10}{10}$ 72.0% 58.0% 1	_								
Parasing Size #4 #8 4.75mm 83.0% Image: marginal system 75.0% Image: marginal system Size #8 2.36mm 80.0% Image: marginal system 68.0% Image: marginal system Size #8 2.36mm 80.0% Image: marginal system 68.0% Image: marginal system Image: marginal system #16 1.18mm 76.0% Image: marginal system 64.0% Image: marginal system 64.0% Image: marginal system 64.0% Image: marginal system Image: marginal system <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Size #8 2.36m 80.0% 68.0% 68.0% 68.0% #10 2mm				83.0%			75.0%		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2.36mm	80.0%			68.0%		
	SIZE	#10							
				72.0%			58.0%		
$ \begin{array}{c c c c c c } \#100 & 0.15mm & 49.0\% & 35.0\% & & & & & & & & & & & & & & & & & & &$									
$\begin{array}{ c c c c c } \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c } \hline \begin{tabular}$									
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % 9.9% 8.5% 9.8% 6.9% 6.9% 7.3% 7.3% 9.8% 6.9% 6.9% 7.3% 7.3% 7.3% 7.3% 7.3% 7.3% 7.3% 7.3									
Liquid Limit Plastic IndexImage: marked state st		#200	0.075mm	35.0%			27.0%		
Plastic IndexImage: content %9.9%8.5%9.8%6.9%6.9%7.3%Organic Content %Image: content % <td>DOTTSD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	DOTTSD								
Moisture Content % 9.9% 8.5% 9.8% 6.9% 6.9% 7.3% Organic Content %<									
Organic Content %Image: Marking Marki									
% Gravel17%10%25%10%% Sand48%38%38%10%% Silt & Clay35%27%29%10%Max. Dry Density110%10%27%29%Opt. Moisture %110%10%10%10%Unconsol. Unconfined Triaxial Uu110%10%10%10%Coeff. Of Consolidation Cv110%10%10%10%Unc. Comp. Strength Qu110%10%10%10%			9.9%	8.5%	9.8%	6.9%	6.9%	7.3%	
% Sand48%38%38%% Silt & Clay35%627%29%Max. Dry Density6666Opt. Moisture %6666Unconsol. Unconfined Triaxial Uu6666Coeff. Of Consolidation Cv6666Unc. Comp. Strength Qu66666									
% Silt & Clay35%27%29%Max. Dry DensityImage: Construct on the system of									
Max. Dry Density Opt. Moisture %Image: Max Dry Density Opt. Moisture % <td colspan="2"></td> <td></td> <td></td> <td></td> <td></td> <td>200/</td> <td></td>							200/		
Opt. Moisture % Image: Consolidation Cv Image: Consolidaticon Cv Image: Consolidaticon Cv			33%			21%	29%		
Unconsol. Unconfined Triaxial Uu Image: Consolidation Cv Image: Consolidat									
Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u									
Unc. Comp. Strength Q _u	-								
	Pocket Pen Value								

Knik Arm Bridge, Mat-Su Access Route

Sampled By:

Project No .:

Project Name:

32-1-01536-003

Steff Browne

Depth			15	20		
Test Hole	No.		B-093	B-093		
Field Sam			S5	S6		
Date Sam			February 16, 2006	February 16, 2006		
Lab No.			B-093S5	B-093S6		
			2 00000	2 00000		
	3"	75mm				
	2"	50mm				
	1.5"	37.5mm				
	1"	25mm				
	0.75"	19mm	100.0%			
	0.5"	12.5mm	96.0%			
Percent	0.375"	9.5mm	95.0%			
Passing	0.25"	6.3mm				
Sieve	#4	4.75mm	89.0%			
Size	#8	2.36mm	85.0%			
0120	#10	2mm				
	#16	1.18mm	82.0%			
	#30	0.6mm	77.0%			
	#40	0.425mm				
	#50	0.3mm	67.0%			
	#100	0.15mm	52.0%			
	#200	0.075mm	37.0%			
DOTTSD						
Liquid Lim	nit					
Plastic Inc						
Moisture 0			9.2%	8.5%		
Organic Content %						
% Gravel			11%			
% Sand			52%			
% Silt & Clay			37%			
Max. Dry Density						
Opt. Moisture %						
Unconsol. Unconfined Triaxial U						
Coeff. Of Consolidation C_v						
Unc. Comp. Strength Q _u Pocket Pen Value						
POCKET PE	en value					

TABLE B-2 Page 65 of 65

TABLE B-3 Page 1 of 10

Project No	D.:	32-1-01536	-003	Sampled By:	Elizabeth A. Karcheski			
Depth			5	10	15	20	30	35
Test Hole			X-1	X-1	X-1	X-1	X-1	X-1
Field Sam			S1	S2	S3	S4	S6	S7
Date Sampled		March 20, 2006	March 20, 2006	March 20, 2006	March 20, 2006	March 20, 2006	March 20, 2006	
Lab No.		X-1S1	X-1S2	X-1S3	X-1S4	X-1S6	X-1S7	
	3"	75mm						
	2"	50mm						
	1.5"	37.5mm		100.0%	100.0%			
	1"	25mm		91.0%	93.0%			
	0.75"	19mm		86.0%	90.0%			
	0.5"	12.5mm		79.0%	85.0%			
Percent	0.375"	9.5mm		76.0%	82.0%			
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm		68.0%	74.0%			
Size	#8	2.36mm		60.0%	66.0%			
	#10	2mm						
	#16	1.18mm		54.0%	60.0%			
	#30	0.6mm		48.0%	54.0%			
	#40	0.425mm						
	#50	0.3mm		40.0%	46.0%			
	#100	0.15mm		30.0%	38.0%			
	#200	0.075mm		23.0%	32.0%			
DOTTSD								
Liquid Lim								
Plastic Inc								
Moisture (10.9%	5.1%	6.9%	4.0%	5.4%	2.6%
Organic Content %			2001	2001				
% Gravel			32%	26%				
% Sand			45%	42%				
% Silt & Clay			23%	32%				
Max. Dry Density Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C _v								
Unc. Comp. Strength Q _u								
	Pocket Pen Value							

TABLE B-3 Page 2 of 10

-		32-1-01536	-003	Sampled By:	Elizabeth A. Karcheski			
Depth			40	45	50	55	60	65
Test Hole	No.		X-1	X-1	X-1	X-1	X-1	X-1
Field Sam	Field Sample No.		S8	S9	S10	S11	S12	S13
Date Sampled		March 20, 2006	March 20, 2006	March 20, 2006	March 20, 2006	March 20, 2006	March 20, 2006	
Lab No.			X-1S8	X-1S9	X-1S10	X-1S11	X-1S12	X-1S13
3" 75mm								
	2"	50mm						
	1.5"	37.5mm			100.0%			
	1"	25mm			99.0%			
	0.75"	19mm			99.0%			
	0.5"	12.5mm			95.0%			
Dereent	0.375"	9.5mm			93.0%			
Percent	0.25"	6.3mm						
Passing Sieve	#4	4.75mm			88.0%			
Size	#8	2.36mm			83.0%			
Size	#10	2mm						
	#16	1.18mm			78.0%			
	#30	0.6mm			75.0%			
	#40	0.425mm						
	#50	0.3mm			69.0%			
	#100	0.15mm			61.0%			
	#200	0.075mm			51.0%			
DOTTSD								
Liquid Lim								
Plastic Inc								
Moisture (5.7%	9.0%	12.1%	8.4%	2.8%	8.6%
Organic Content %								
% Gravel				12%				
% Sand				37%				
% Silt & Clay				51%				
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of Consolidation C _v								
Unc. Comp. Strength Q _u								
Pocket Pe	en Value							

TABLE B-3 Page 3 of 10

Project Name: Knik Arm Bridge, Mat-Su Access Route

Pocket Pen Value

Project No	o.:	32-1-01536	6-003	Sampled By:	Elizabeth A. Karcheski	i		
Depth			70	5	10	15	20	25
Test Hole	No.		X-1	X-2	X-2	X-2	X-2	X-2
Field Sarr	Field Sample No.		S14	S1	S2	S3	S4	S5
Date Sam	npled		March 20, 2006	March 23, 2006	February 13, 2006	February 13, 2006	February 13, 2006	February 13, 2006
Lab No.	Lab No.		X-1S14	X-2S1	X-2S2	X-2S3	X-2S4	X-2S5
	3"	75mm						
	2"	50mm						
	1.5"	37.5mm	100.0%			100.0%		
	1"	25mm	93.0%			92.0%		
	0.75"	19mm	91.0%			89.0%		
	0.5"	12.5mm	89.0%			85.0%		
Percent	0.375"	9.5mm	72.0%			80.0%		
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm	59.0%			70.0%		
Size	#8	2.36mm	49.0%			62.0%		
0120	#10	2mm						
	#16	1.18mm	41.0%			55.0%		
	#30	0.6mm	34.0%			49.0%		
	#40	0.425mm						
	#50	0.3mm	27.0%			42.0%		
	#100	0.15mm	21.0%			34.0%		
	#200	0.075mm	16.0%			27.0%		
DOTTSD								
Liquid Lim								
Plastic Ind	dex							
	Moisture Content % 4.1%		4.1%	5.5%	10.2%	6.8%	5.7%	10.0%
	Organic Content %							
% Gravel 41%					30%			
% Sand 43%					43%			
			16%			27%		
	Max. Dry Density							
Opt. Mois	Opt. Moisture %							
Unconsol	Unconsol. Unconfined Triaxial U _u							
Coeff. Of	Coeff. Of Consolidation C _v							
Unc. Corr	np. Strength	n Q _u						

TABLE B-3 Page 4 of 10

Project No	0.:	32-1-01536-	-003	Sampled By:	Elizabeth A. Karcheski			
Depth			30	40	45	50	60	65
Test Hole			X-2	X-2	X-2	X-2	X-2	X-2
Field Sam	nple No.		S6	S8	S9	S10	S12	S13
Date Sam	npled		March 23, 2006	March 23, 2006	March 23, 2006	March 23, 2006	March 23, 2006	March 23, 2006
Lab No.	-		X-2S6	X-2S8	X-2S9	X-2S10	X-2S12	X-2S13
	3"	75mm						
	2"	50mm						
	1.5"	37.5mm		100.0%				
	1"	25mm		97.0%				
	0.75"	19mm		96.0%			100.0%	
	0.5"	12.5mm		89.0%			96.0%	
Percent	0.375"	9.5mm		84.0%			92.0%	
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm		67.0%			85.0%	
Size	#8	2.36mm		54.0%			80.0%	
0126	#10	2mm						
	#16	1.18mm		43.0%			75.0%	
	#30	0.6mm		35.0%			71.0%	
	#40	0.425mm						
	#50	0.3mm		28.0%			66.0%	
	#100	0.15mm		21.0%			62.0%	
	#200	0.075mm		16.0%			58.0%	
DOTTSD								
Liquid Lim								
Plastic Inc								
Moisture (13.5%	3.3%	6.2%	6.3%	13.8%	3.4%
Organic C								
% Gravel				33%			15%	
% Sand			51%			27%		
% Silt & Clay			16%			58%		
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
Coeff. Of	Consolidati	on C _v						
Unc. Com	np. Strength	l Q _u						
Pocket Pe								

Sampled By:

TABLE B-3 Page 5 of 10

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Elizabeth A. Karcheski

Depth		70	5	10	15	20	25	
Test Hole No.			X-2	X-3	X-3	X-3	X-3	X-3
Field Sample No.		S14	S1	S2	S3	S4	S5	
Date Sampled		March 23, 2006	March 22, 2006	March 22, 2006	March 22, 2006	March 22, 2006	March 22, 2006	
Lab No.		X-2S14	X-3S1	X-3S2	X-3S3	X-3S4	X-3S5	
Percent Passing Sieve Size	2" 5 1.5" 3 1" 2 0.75" 1 0.375" 9 0.25" 6 #4 4 #8 2 #10 2 #16 1 #30 0 #40 0 #50 0 #100 0	75mm 50mm 57.5mm 25mm 25mm 2.5mm 2.5mm 3.3mm 4.75mm 2.36mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm						100.0% 95.0% 88.0% 86.0% 79.0% 74.0% 65.0% 58.0% 52.0% 47.0% 43.0%
DOTTSD	#200 0).075mm						28.0%
Liquid Lim	nit							
Plastic Inc								
	Content %		3.3%	10.2%	7.3%	10.2%	5.8%	6.6%
Organic C	Content %							
% Gravel								35%
% Sand								37%
% Silt & Clay							28%	
Max. Dry Density Opt. Moisture %								
-								
Unconsol. Unconfined Triaxial Uu								
Coeff. Of Consolidation C_v								
	p. Strength Q	l _u						
Pocket Pe	en Value							

TABLE B-3 Page 6 of 10

Project N	0.:	32-1-01536	6-003	Sampled By:	Elizabeth A. Karcheski			
Depth			30	35	40	50	55	5
Test Hole	No.		X-3	X-3	X-3	X-3	X-3	X-4
Field Sam	nple No.		S6	S7	S8	S10	S11	S1
Date Sam	npled		March 22, 2006	March 22, 2006	March 22, 2006	March 22, 2006	March 22, 2006	March 24, 2006
Lab No.			X-3S6	X-3S7	X-3S8	X-3S10	X-3S11	B-010S3
	3"	75mm						
	2"	50mm				100.0%		
	1.5"	37.5mm				86.0%		
	1"	25mm				74.0%		
	0.75"	19mm				70.0%		
	0.5"	12.5mm				63.0%		
Percent	0.375"	9.5mm				60.0%		
Passing	0.25"	6.3mm						
Sieve	#4	4.75mm				53.0%		
Size	#8	2.36mm				46.0%		
0120	#10	2mm						
	#16	1.18mm				40.0%		
	#30	0.6mm				35.0%		
	#40	0.425mm						
	#50	0.3mm				30.0%		
	#100	0.15mm				24.0%		
	#200	0.075mm				19.0%		
DOTTSD								
Liquid Lin								
Plastic Inc								
	Content %		6.0%	3.0%	6.7%	4.1%	4.9%	22.2%
Organic C								
% Gravel						47%		
	% Sand					33%		
% Silt & Clay				19%				
Max. Dry Density								
Opt. Moisture %								
Unconsol. Unconfined Triaxial U _u								
	Consolidat	-						
	np. Strength	n Q _u						
Pocket Pe	en Value							

Sampled By:

TABLE B-3 Page 7 of 10

Project Name: Knik Arm Bridge, Mat-Su Access Route

Project No.:

32-1-01536-003

Elizabeth A. Karcheski

Depth	10	15	20	25	30	35
Test Hole No.	X-4	X-4	X-4	X-4	X-4	X-4
Field Sample No.	S2	S3	S4	S5	S6	S7
Date Sampled	March 24, 2006					
Lab No.	X-4S2	X-4S3	X-4S4	X-4S5	X-4S6	X-4S7
3" 75mm 2" 50mm 1.5" 37.5mm 1" 25mm 0.75" 19mm 0.5" 12.5mm 0.5" 9.5mm 0.375" 9.5mm 0.25" 6.3mm #4 4.75mm Sieve #8 2.36mm #10 2mm #16 1.18mm #30 0.6mm #40 0.425mm #50 0.3mm #100 0.15mm						
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u Pocket Pen Value	15.1% u	22.9% 78%	8.6%	14.5%	18.6%	21.9%

Sampled By:

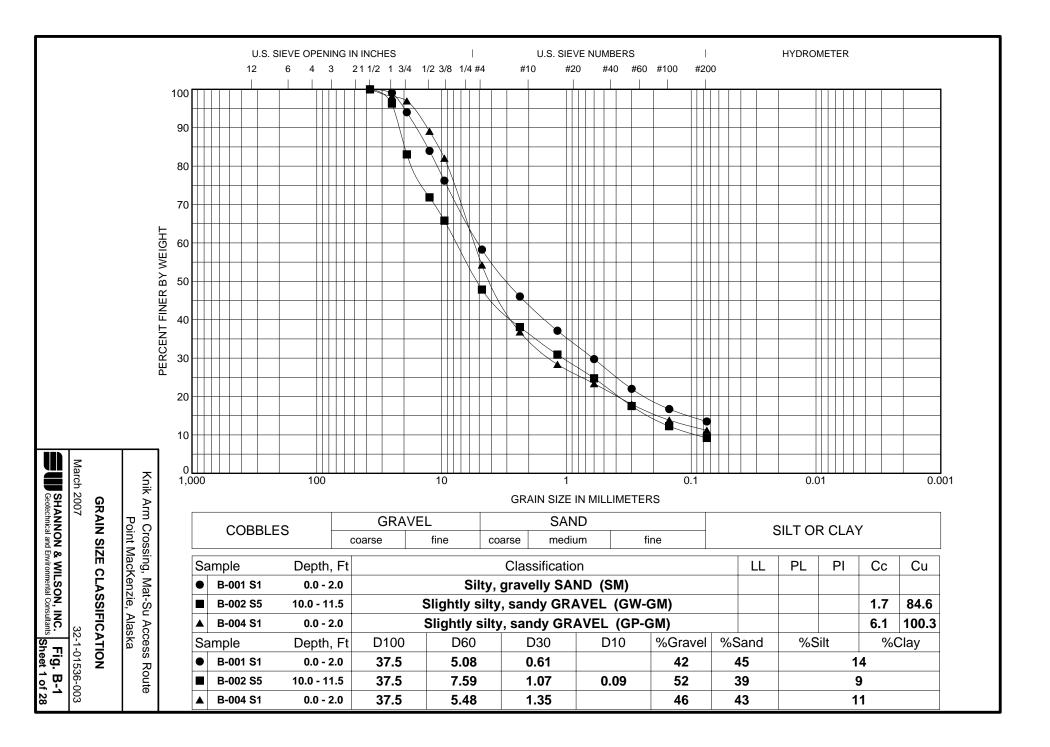
TABLE B-3 Page 8 of 10

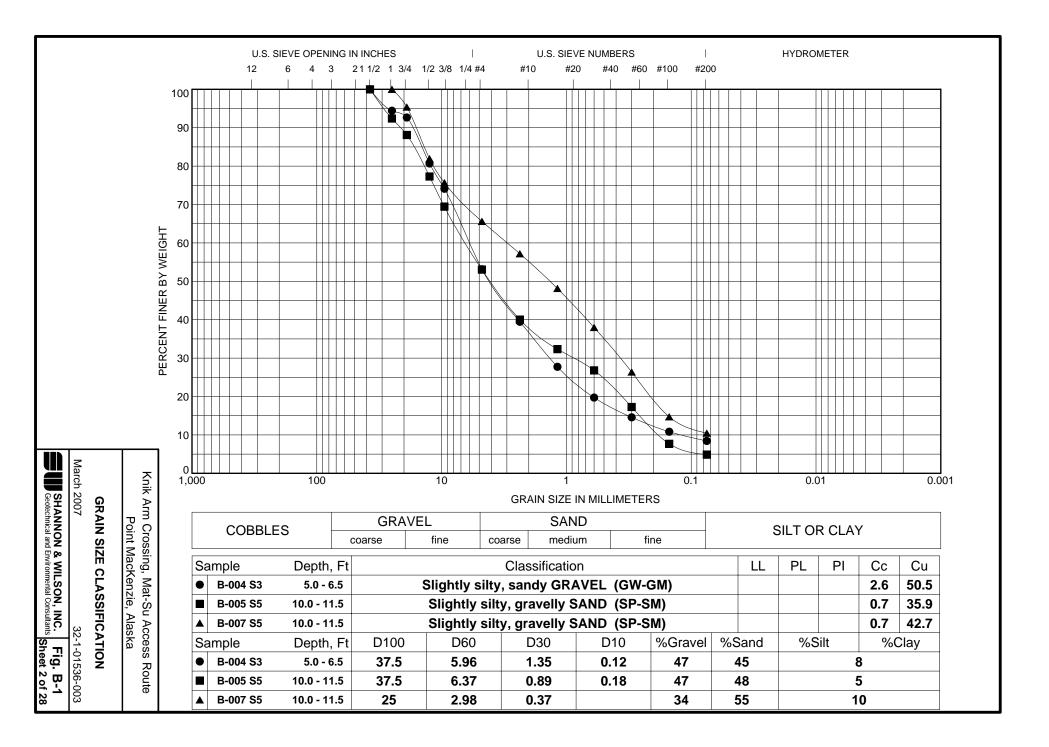
Project Name: Knik Arm Bridge, Mat-Su Access Route

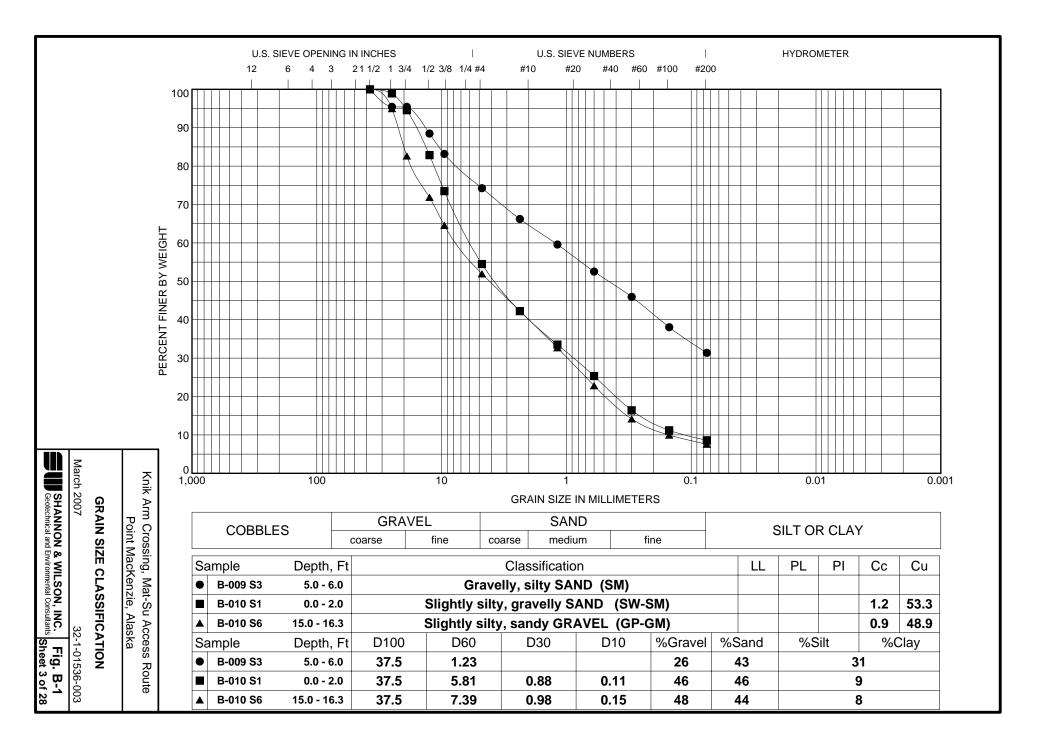
Project No.:

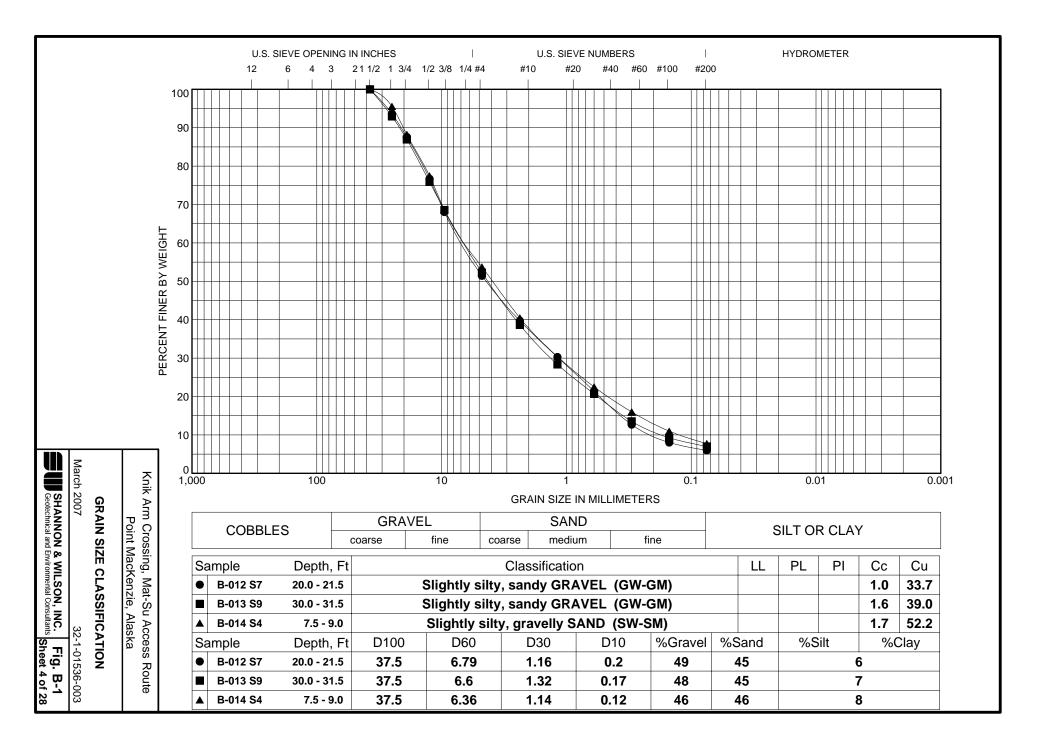
32-1-01536-003

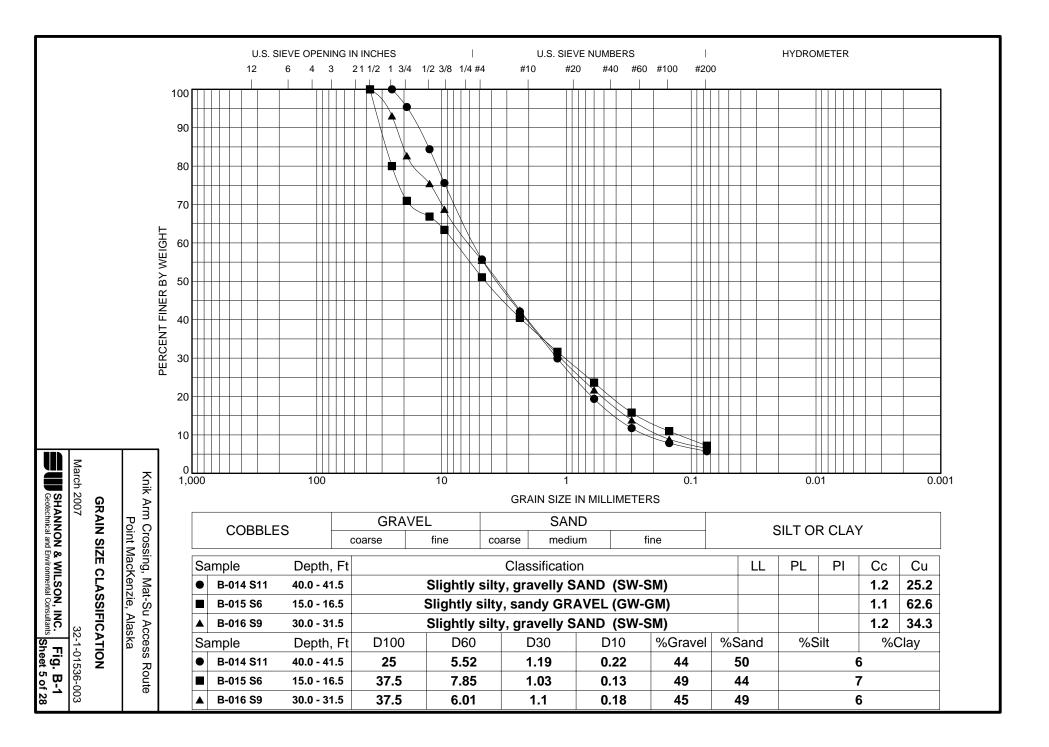
Elizabeth A. Karcheski

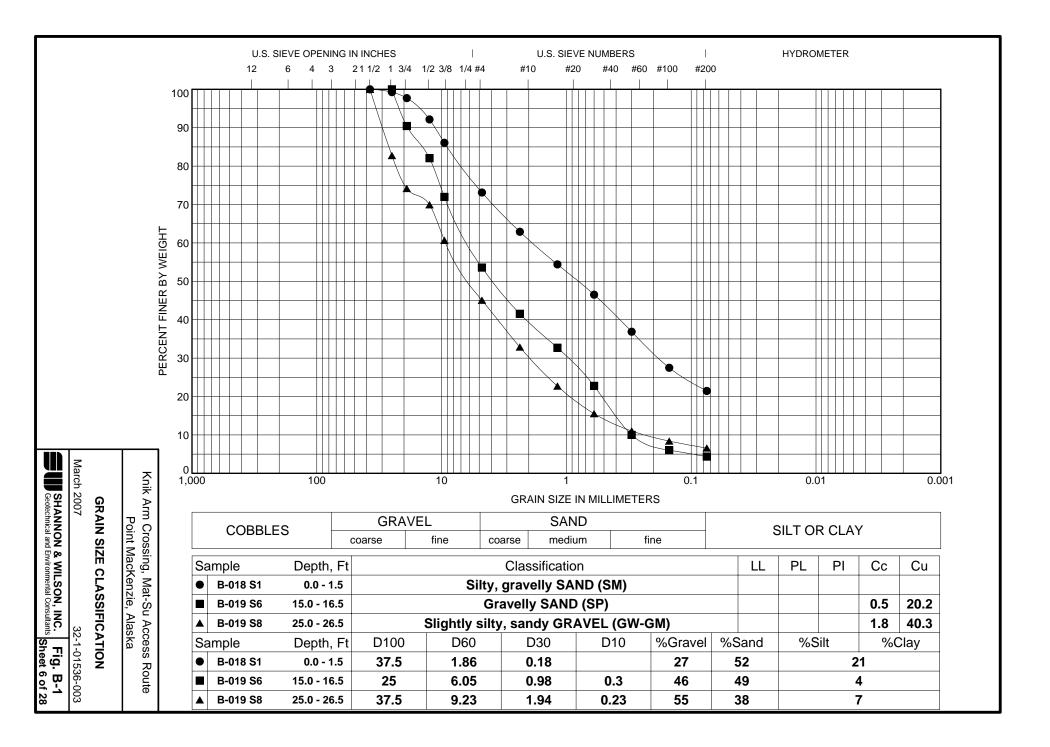

Depth		40	5	10	15	25	30	
Test Hole No.		X-4	X-6	B-013	B-013	B-013	B-014	
Field Sample No.		S8	S1	S2	S4	S5	S6	
Date Sam	pled		February 14, 2006	February 15, 2006				
Lab No.		X-4S8	X-6S1	X-6S2	X-6S4	X-6S5	X-6S6	
Percent Passing Sieve Size	2" 1.5" 1.5" 0.75" 0.5" 0.25" #4 #8 #10 #16 #30 #40 #50	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 6.3mm 2.36mm 2.36mm 2.36mm 0.425mm 0.425mm 0.3mm 0.15mm						
DOTTSD		0.075mm						
Liquid Lim								
Plastic Index Moisture Content % Organic Content % % Gravel			20.3%	7.2%	12.6%	19.4%	23.1%	19.1%
% Sand % Silt & Clay					40%			
Max. Dry Density				1070				
Opt. Moisture %								
Unconsol. Unconfined Triaxial U								
Coeff. Of Consolidation C_v								
	p. Strength C	x u						
Pocket Pe	en value							

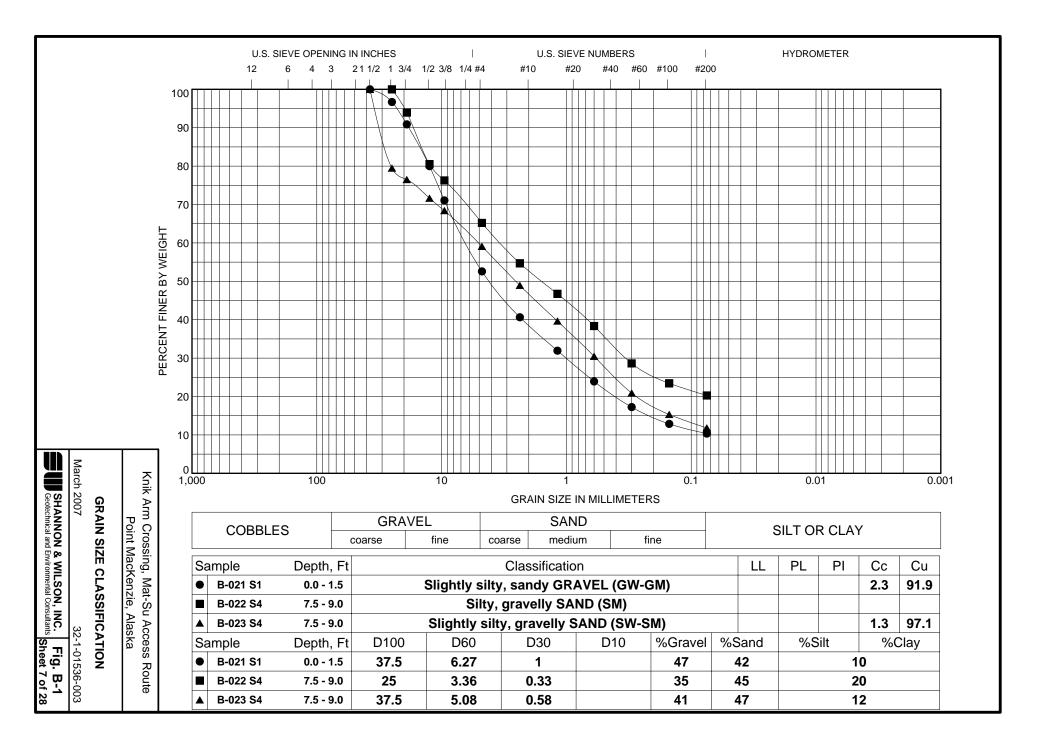

TABLE B-3 Page 9 of 10

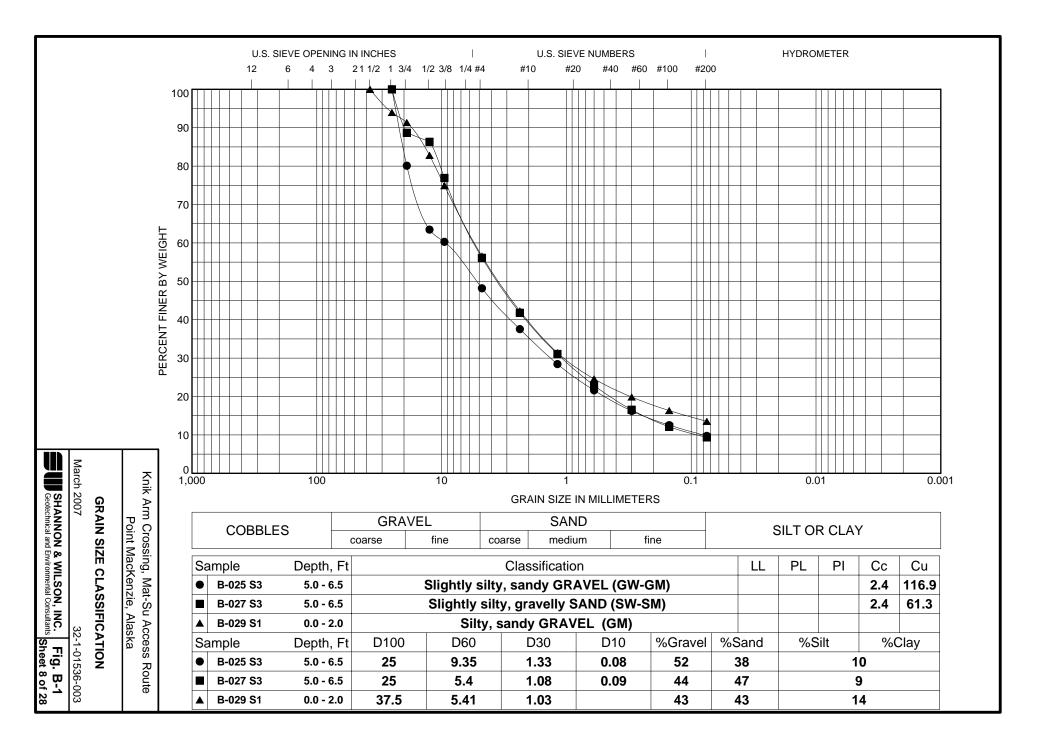

Project N	lo.:	32-1-01536	-003	Sampled By:	Elizabeth A. Karcheski	i		
Field Sar Date Sar	Depth Test Hole No. Field Sample No. Date Sampled		5 X-7 S1 March 25, 2006	10 X-7 S2 March 25, 2006	15 X-7 S3 March 25, 2006	20 X-7 S4 March 25, 2006	25 X-7 S5 March 25, 2006	5 X-8 S1 March 25, 2006
Lab No.			X-7S1	X-7S2	X-7S3	X-7S4	X-7S5	X-8S1
Percent Passing Sieve Size	3" 2" 1.5" 1" 0.75" 0.5" 0.25" #4 #8 #10 #16 #30 #40 #50 #100 #200	75mm 50mm 37.5mm 25mm 19mm 12.5mm 9.5mm 6.3mm 4.75mm 2.36mm 2.36mm 1.18mm 0.6mm 0.425mm 0.3mm 0.15mm 0.075mm						
Liquid Lir Plastic In Moisture	DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content %		18.2%	23.9%	20.3%	22.5%	19.2%	13.1%
% Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U				50%				
Coeff. Of	Coeff. Of Consolidation C_v Unc. Comp. Strength Q_u							
	en Value							

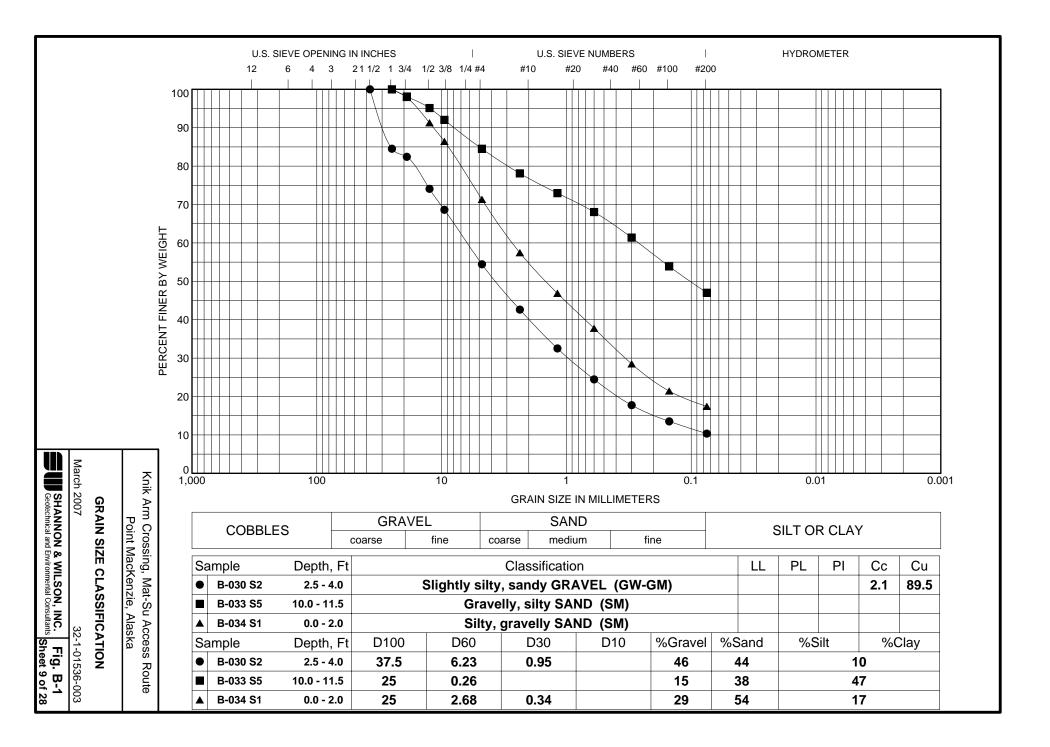

TABLE B-3 Page 10 of 10

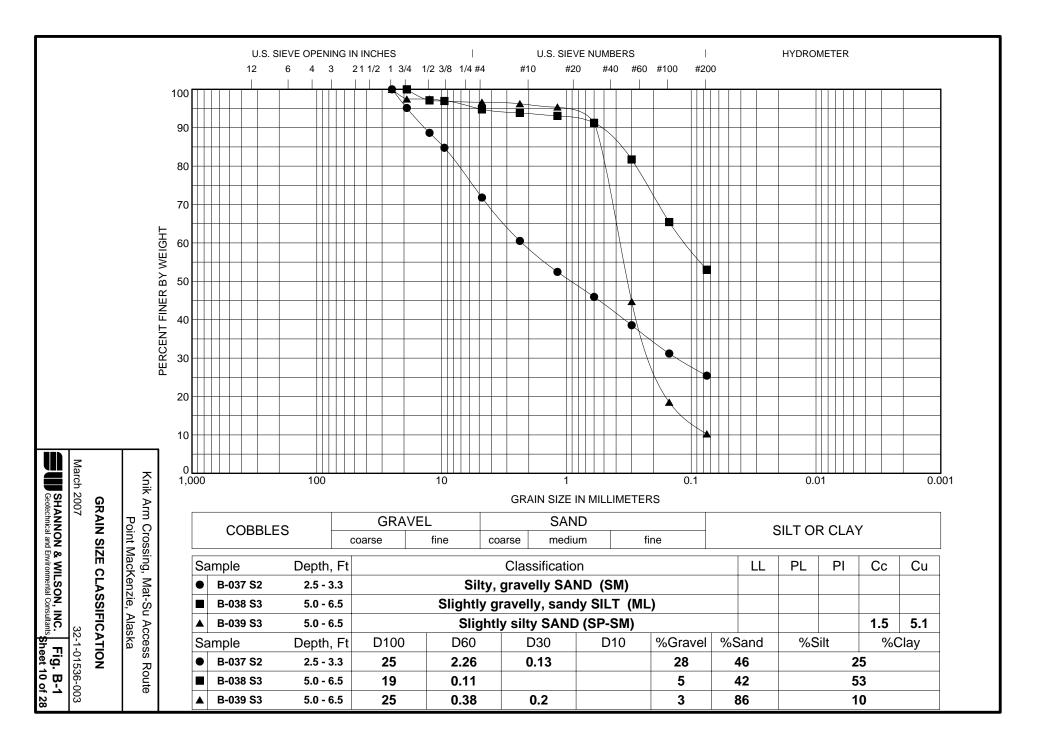

Project No.	.: 3	2-1-01536	-003	Sampled By:	Elizabeth A. Karcheski		
Field Samp	Test Hole No. Field Sample No. Date Sampled		10 X-8 S2 March 25, 2006 X-8S2	15 X-8 S3 March 25, 2006 X-8S3	20 X-8 S4 March 25, 2006 X-8S4	25 X-8 S5 March 25, 2006 X-8S5	
Percent Passing Sieve Size	2" 5 1.5" 3 1" 2 0.75" 1 0.5" 1 0.375" 9 0.25" 6 #4 4 #8 2 #10 2 #16 1 #30 0 #40 0 #50 0 #100 0	25mm 60mm 67.5mm 97.5mm 90mm 2.5mm 2.5mm 9.5mm 9.36mm 9.36mm 9.425mm 9.425mm 9.375mm 9.15mm 9.075mm					
DOTTSD Liquid Limit Plastic Index Moisture Content % Organic Content % % Gravel % Sand % Silt & Clay Max. Dry Density Opt. Moisture % Unconsol. Unconfined Triaxial U _u Coeff. Of Consolidation C _v Unc. Comp. Strength Q _u		15.9%	26.0%	21.8% 68%	22.4%		
	o. Strength Q						

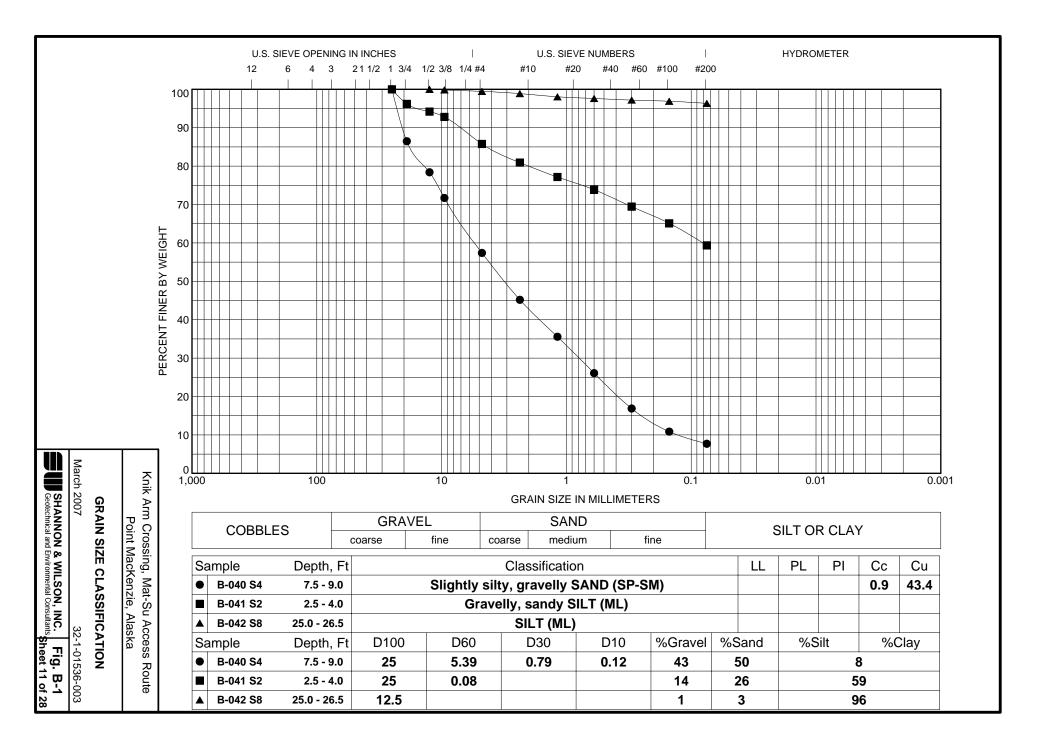


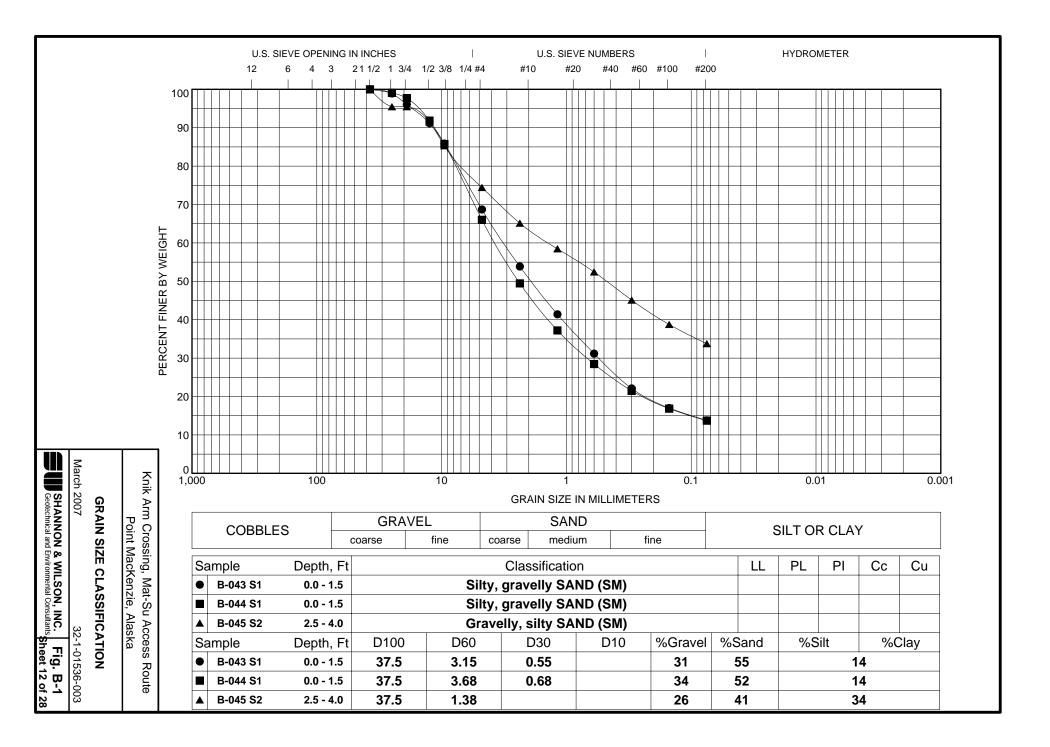


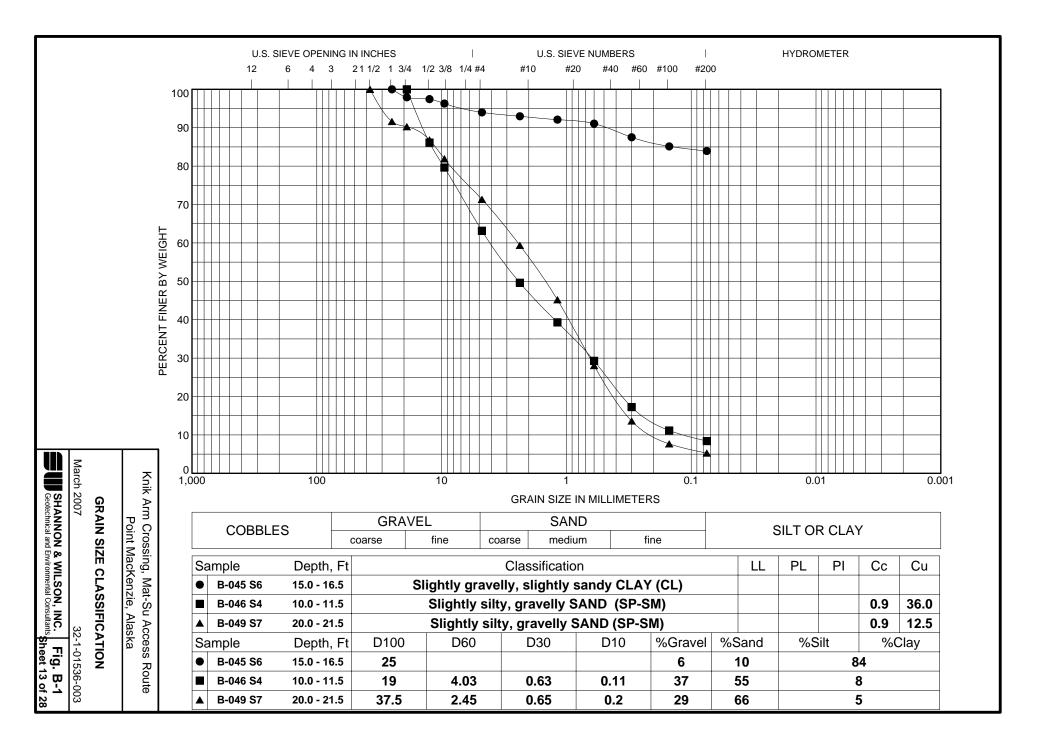


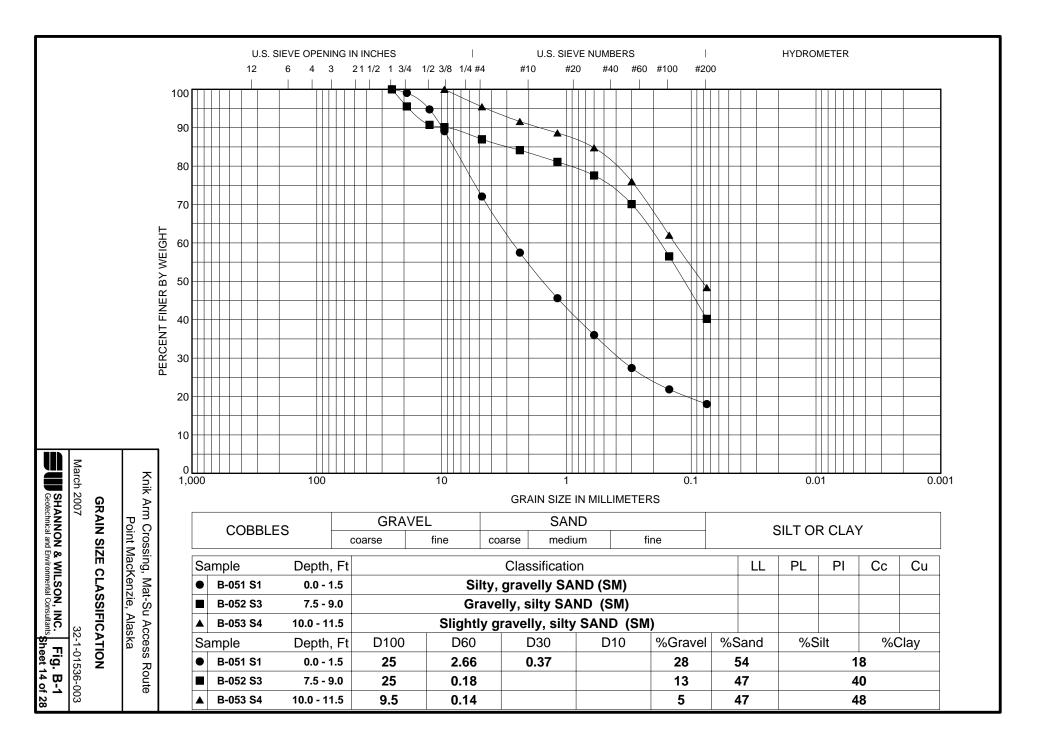


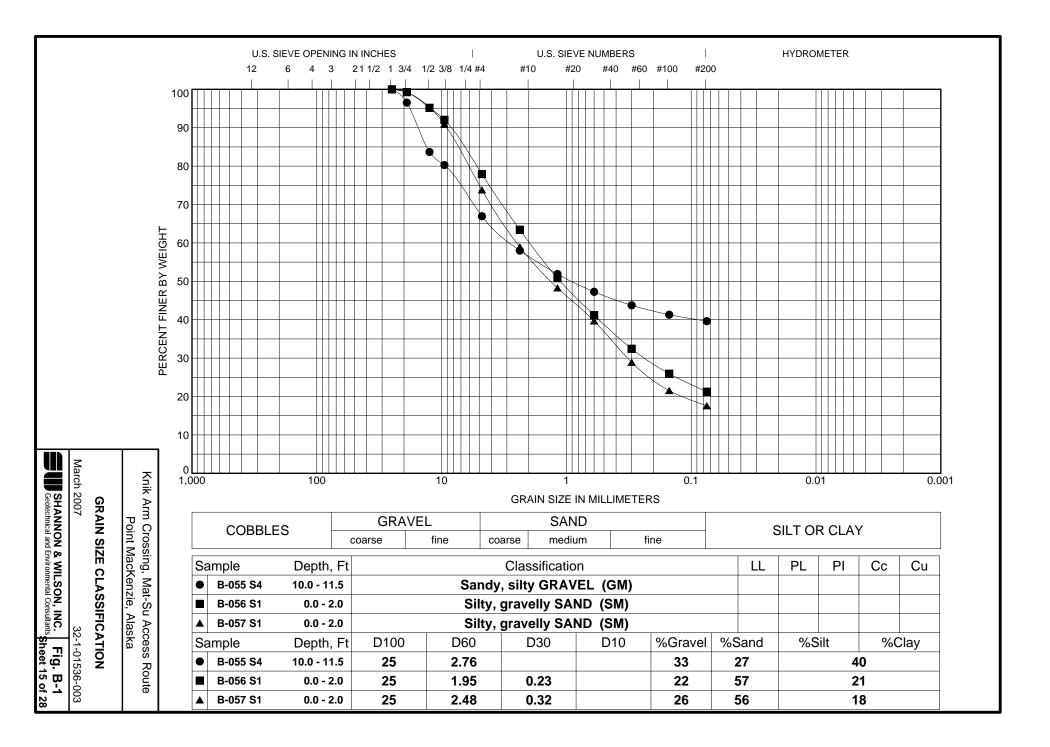


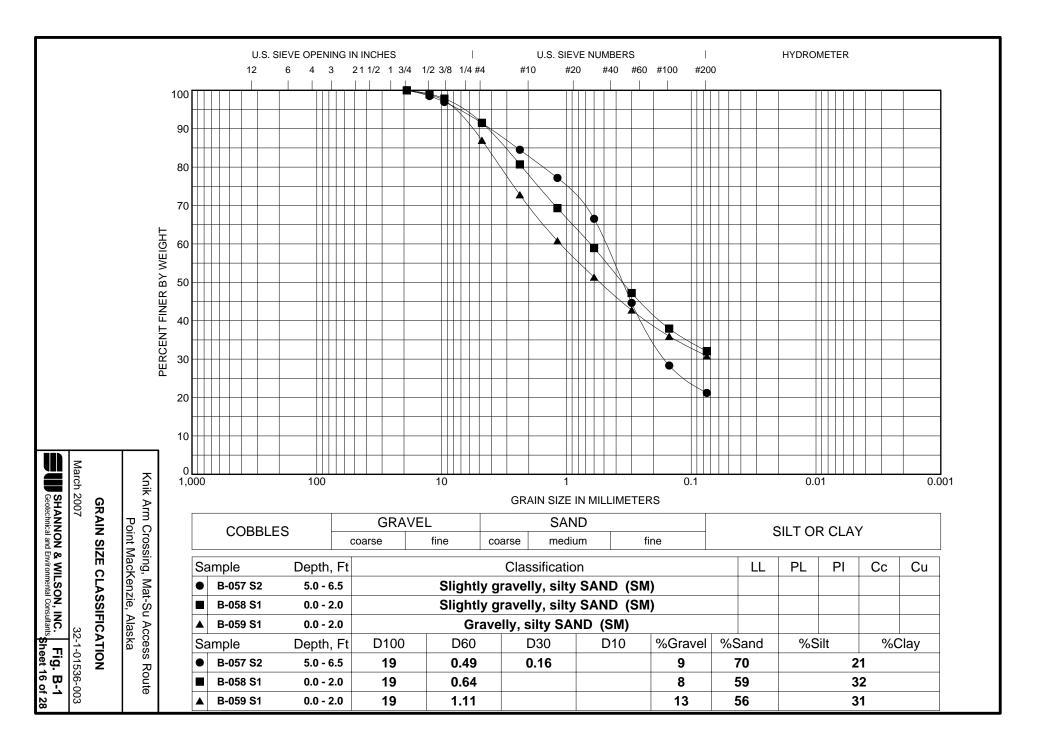


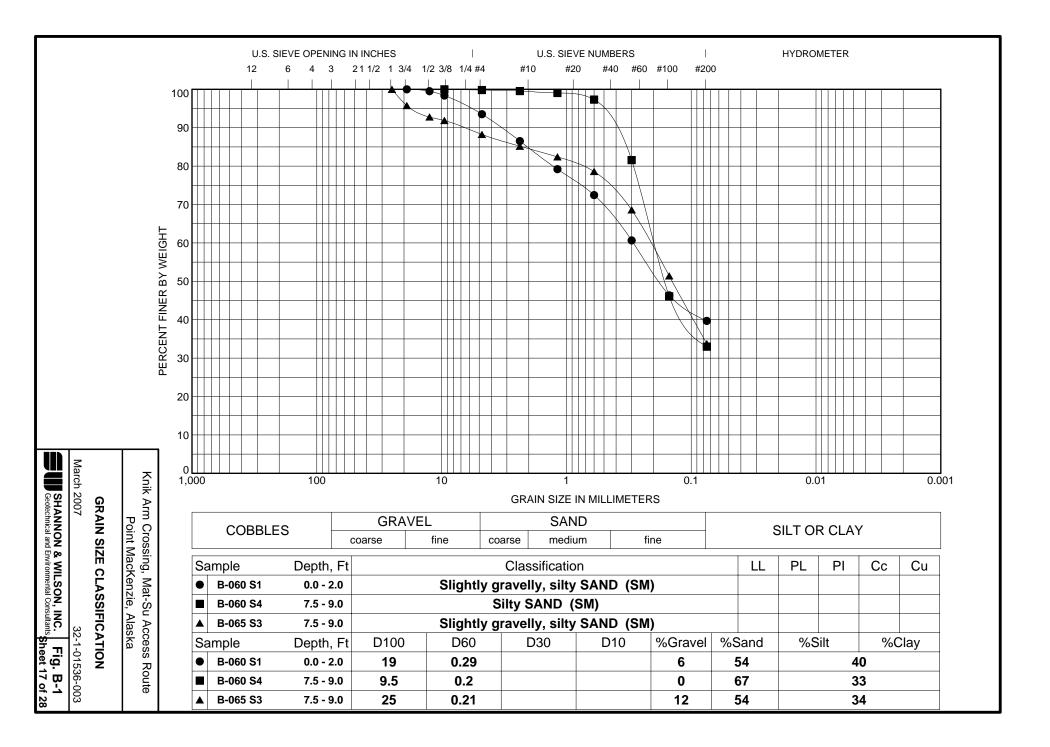


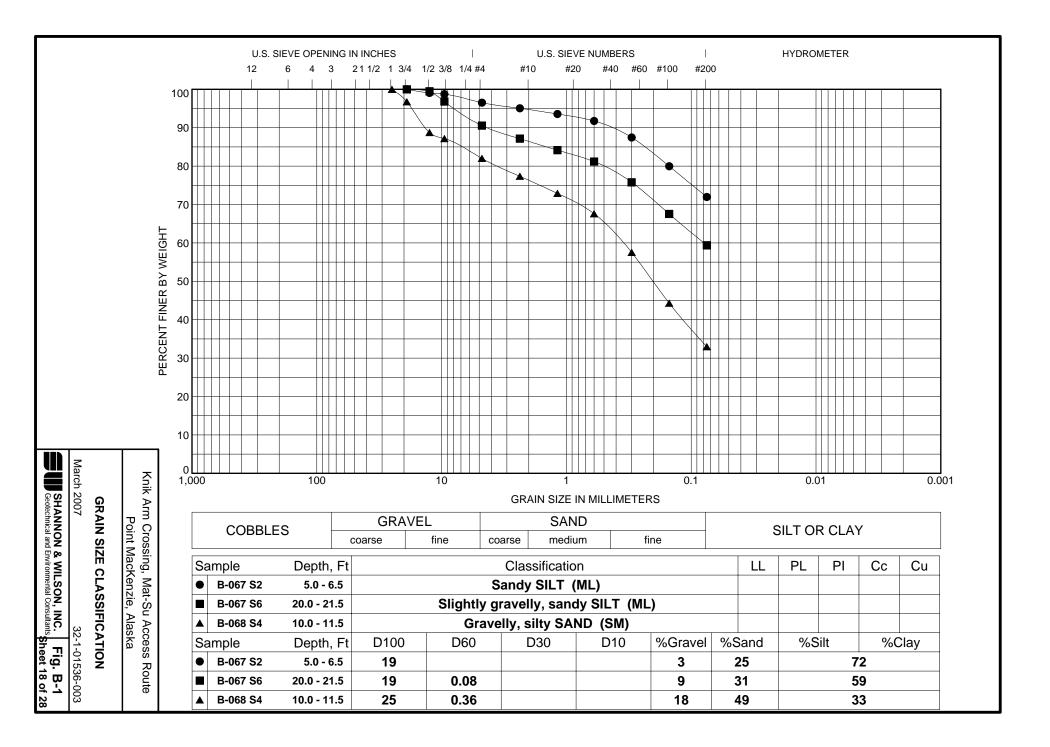


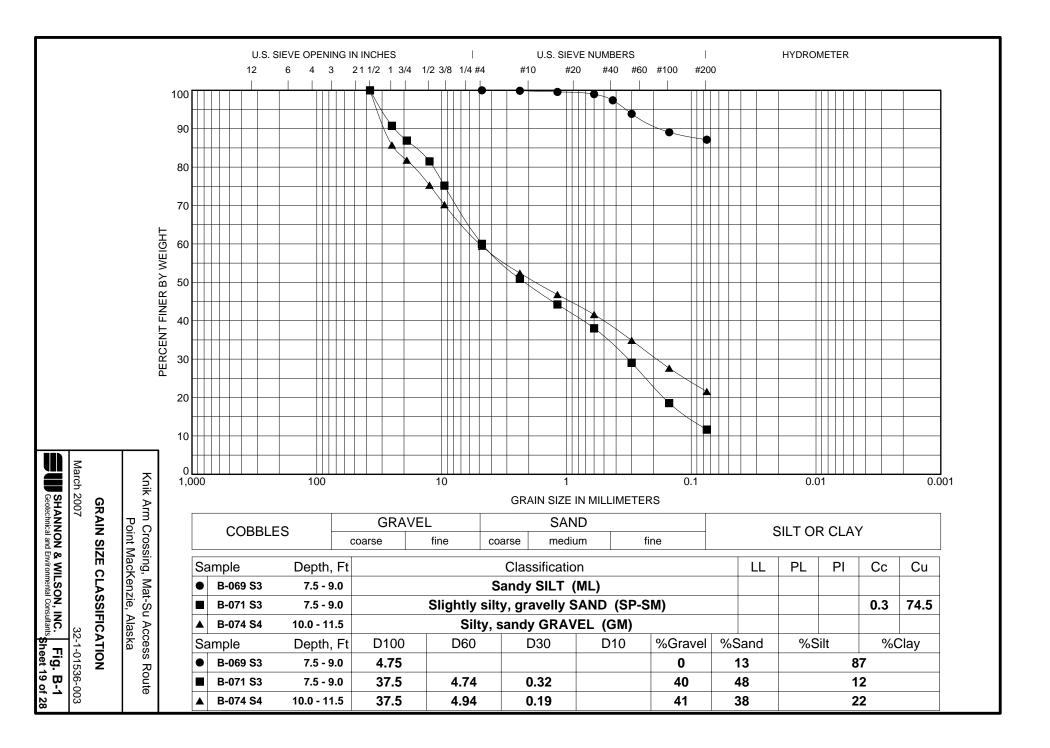


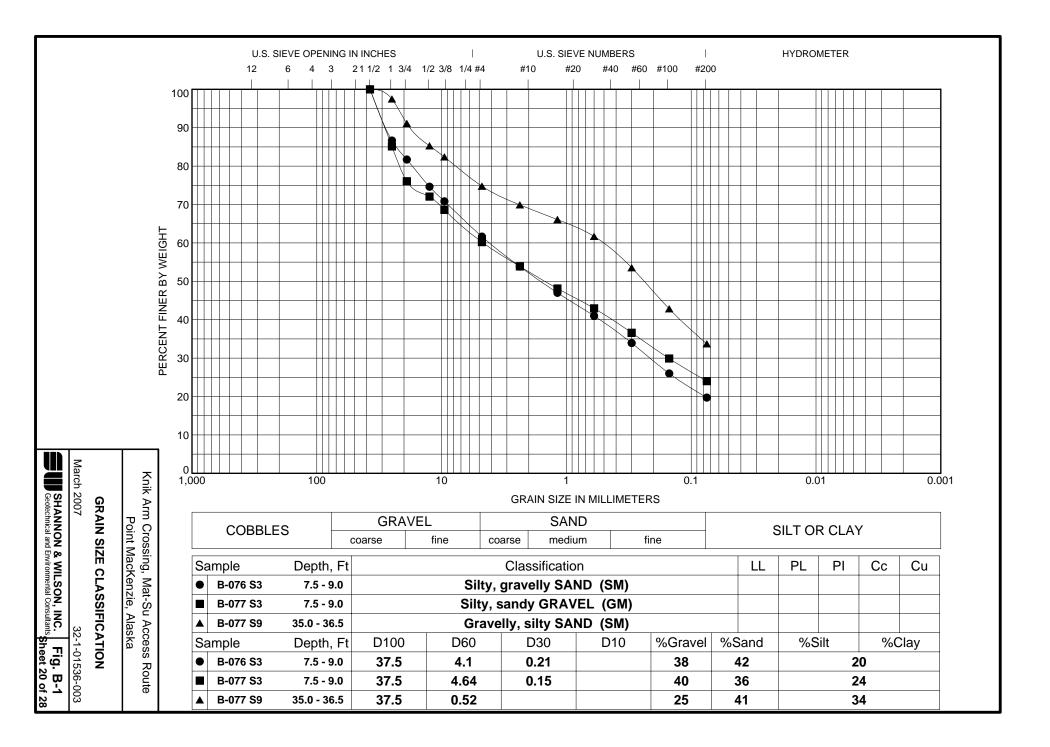


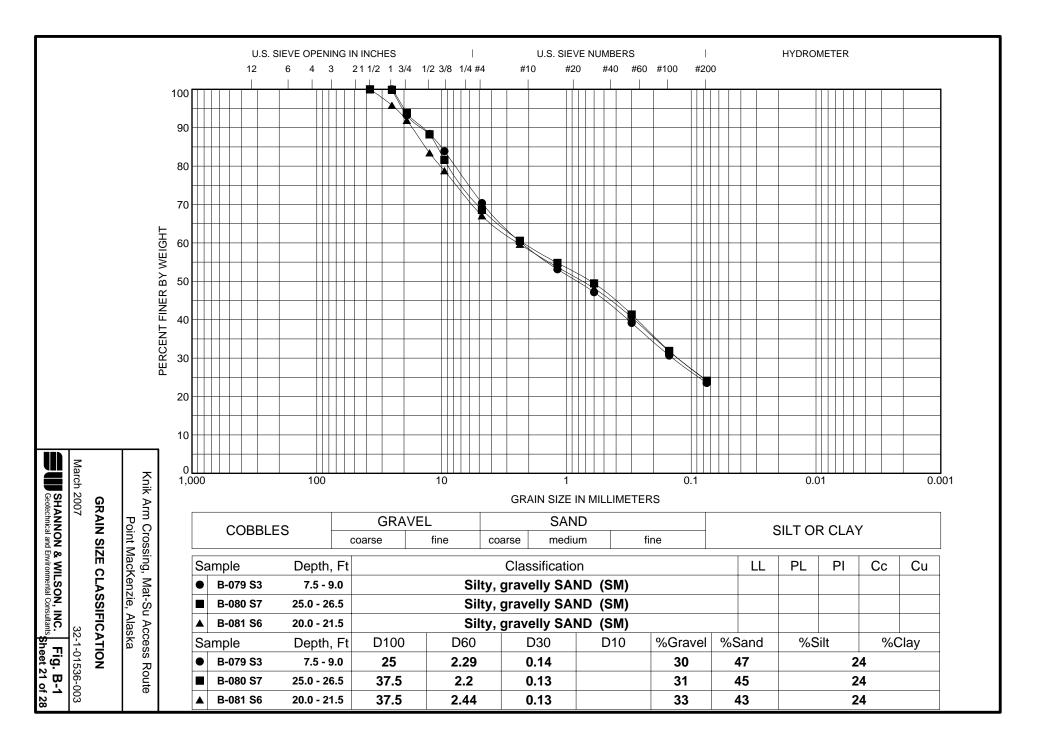


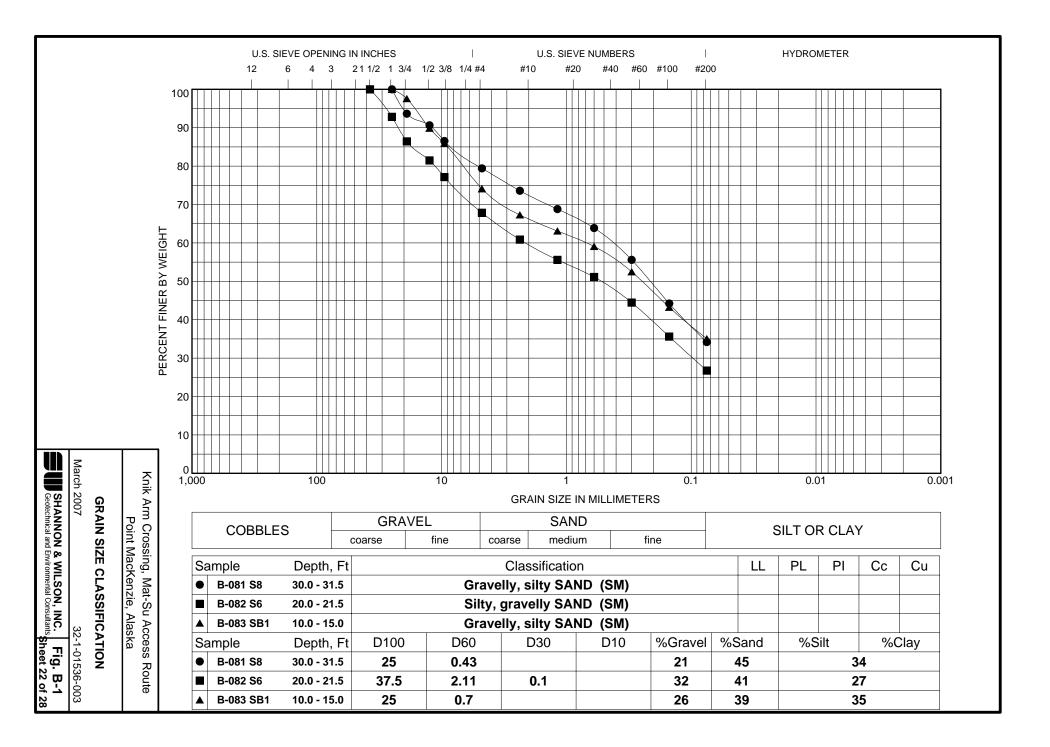


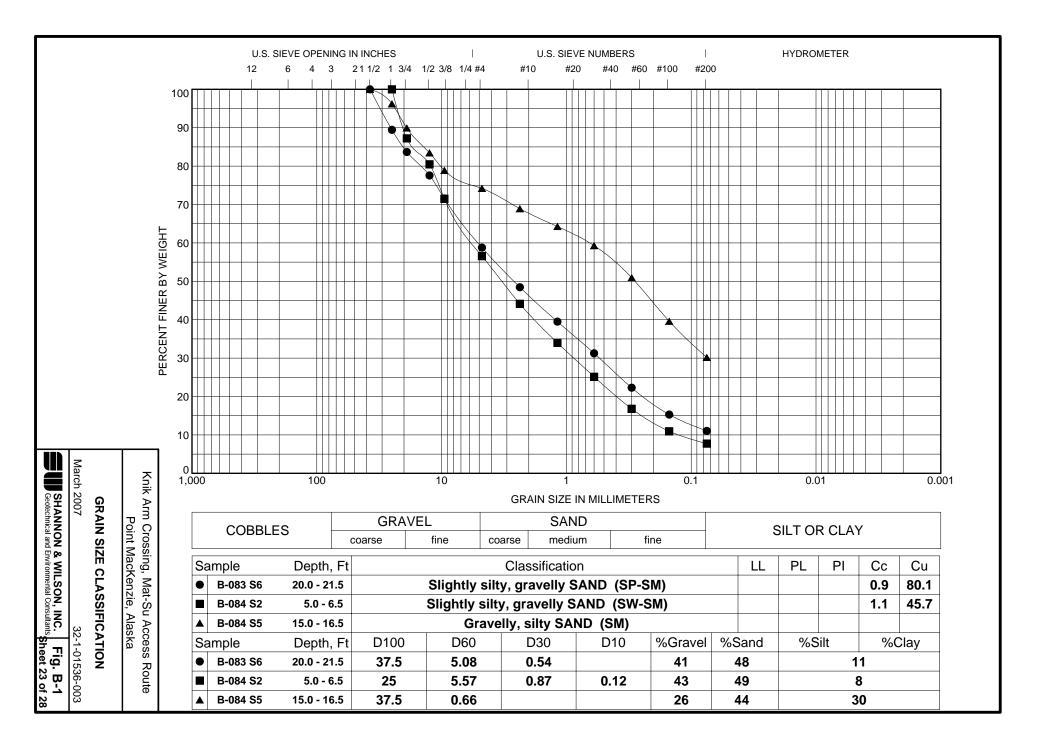


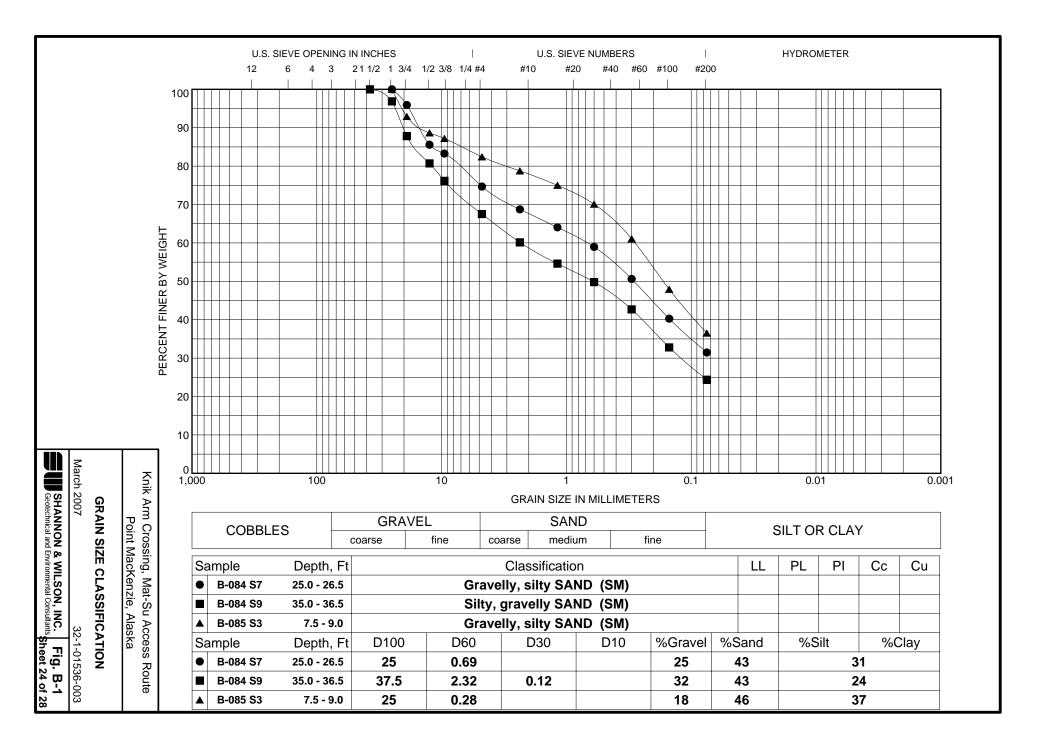


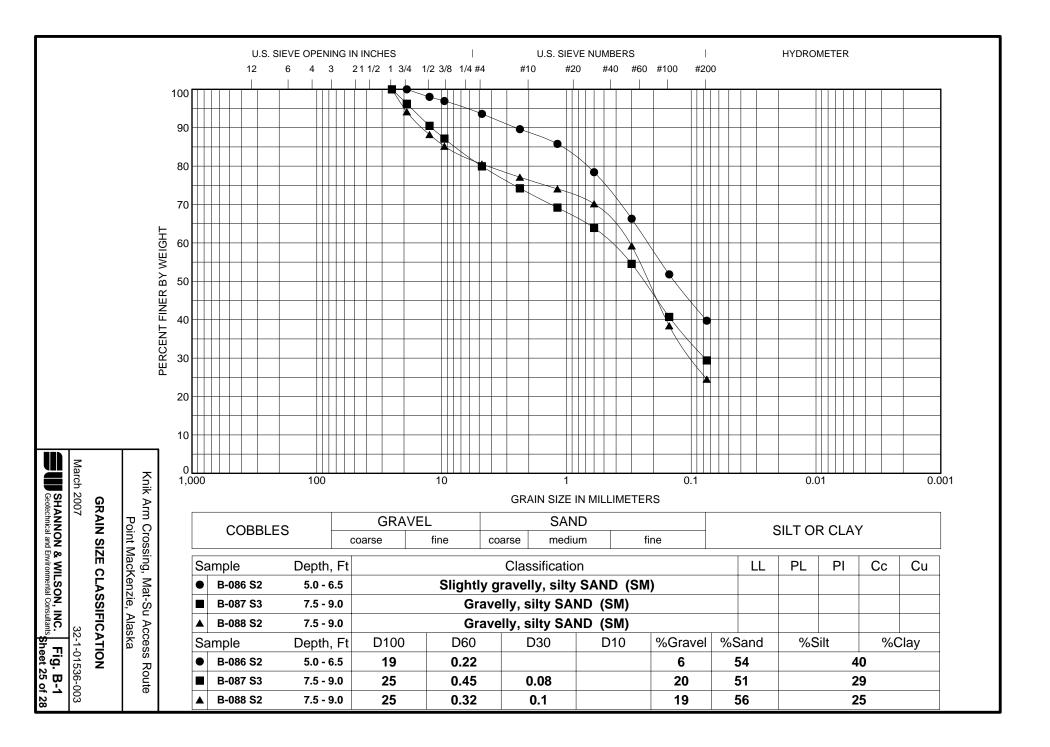


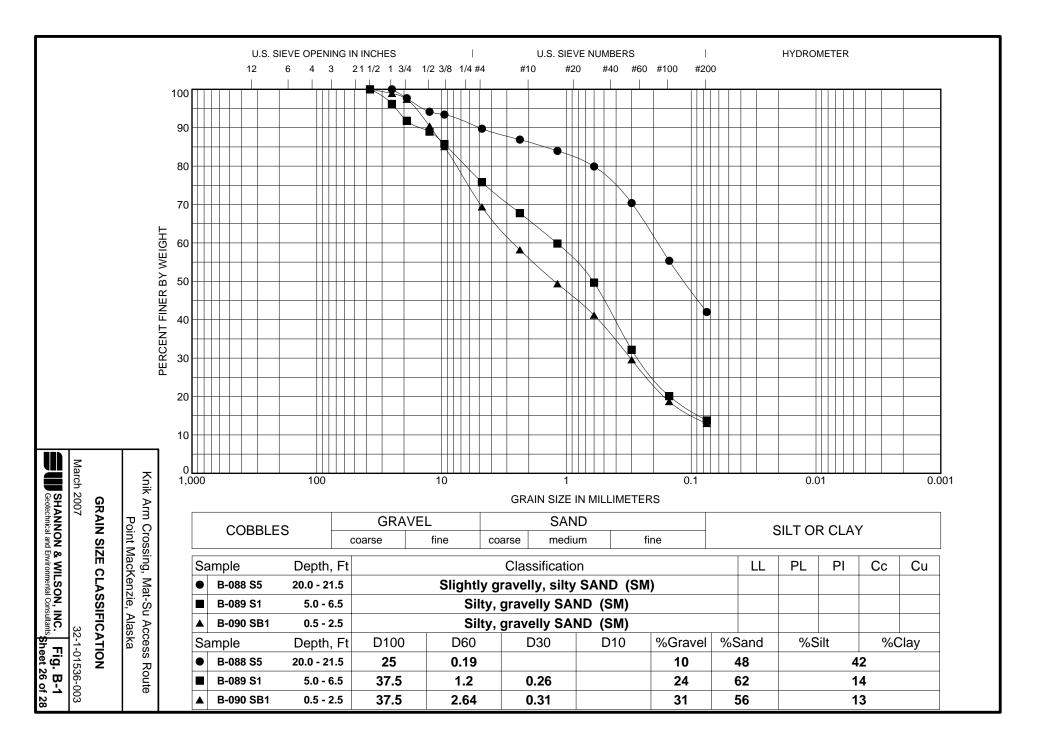


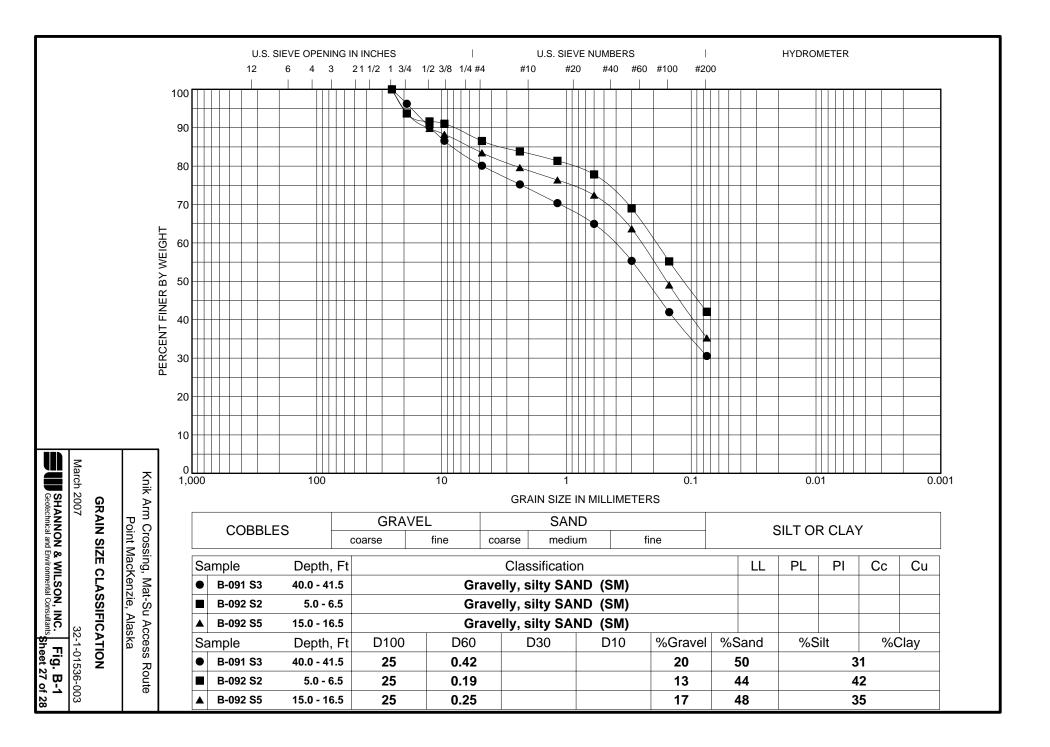


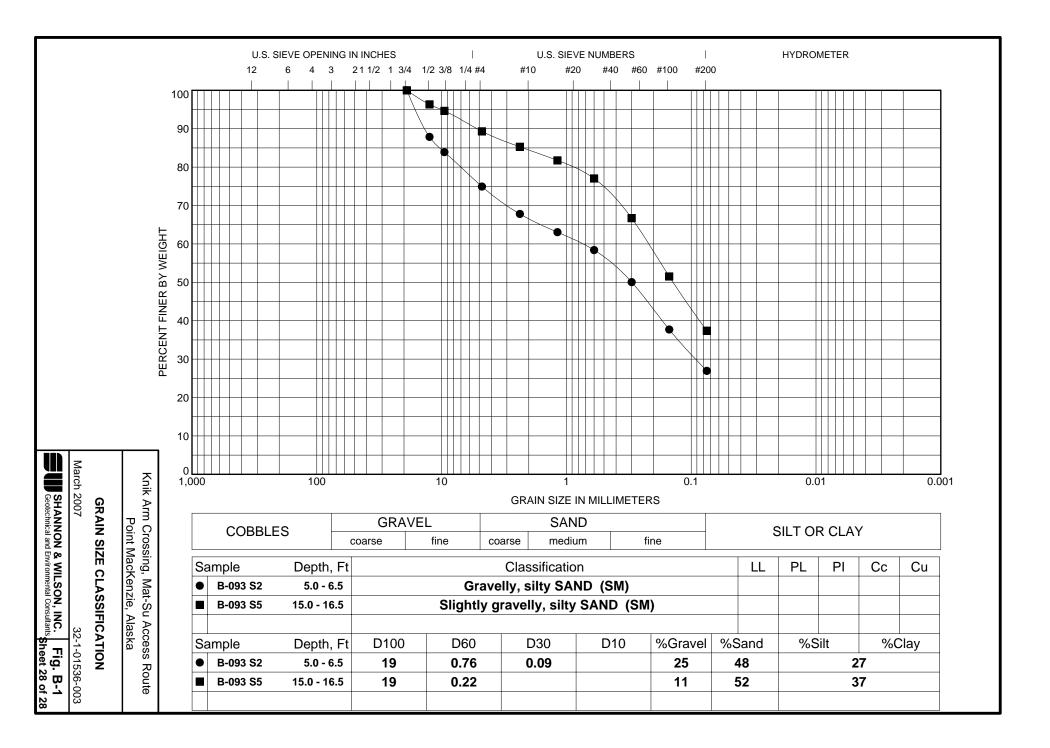


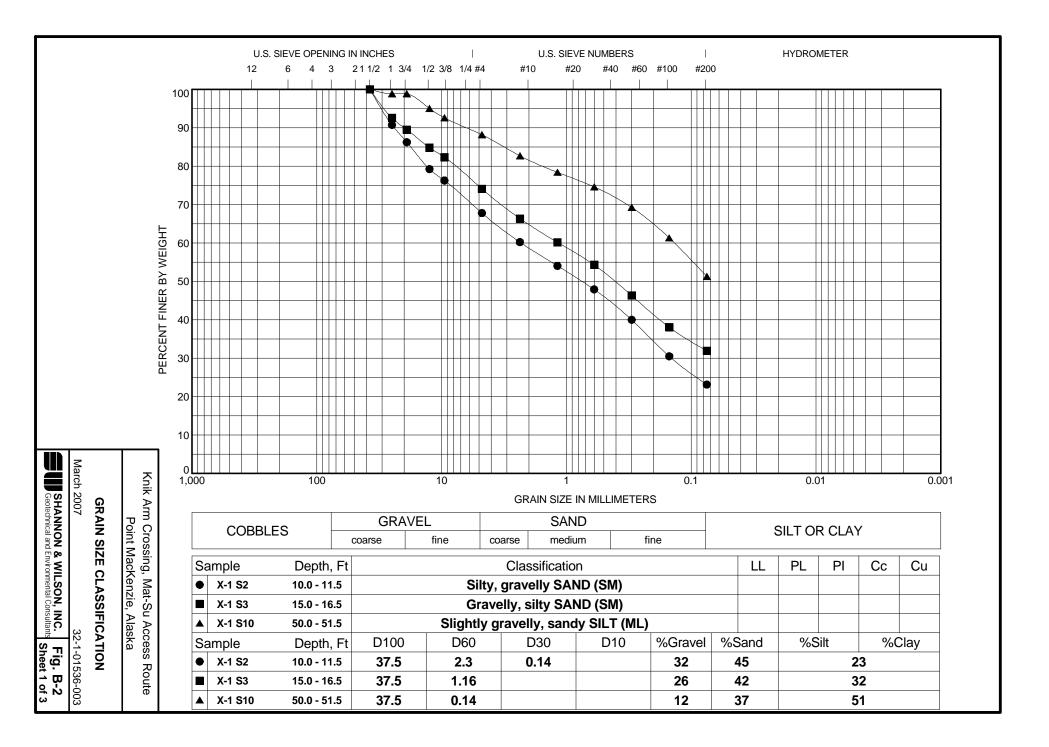


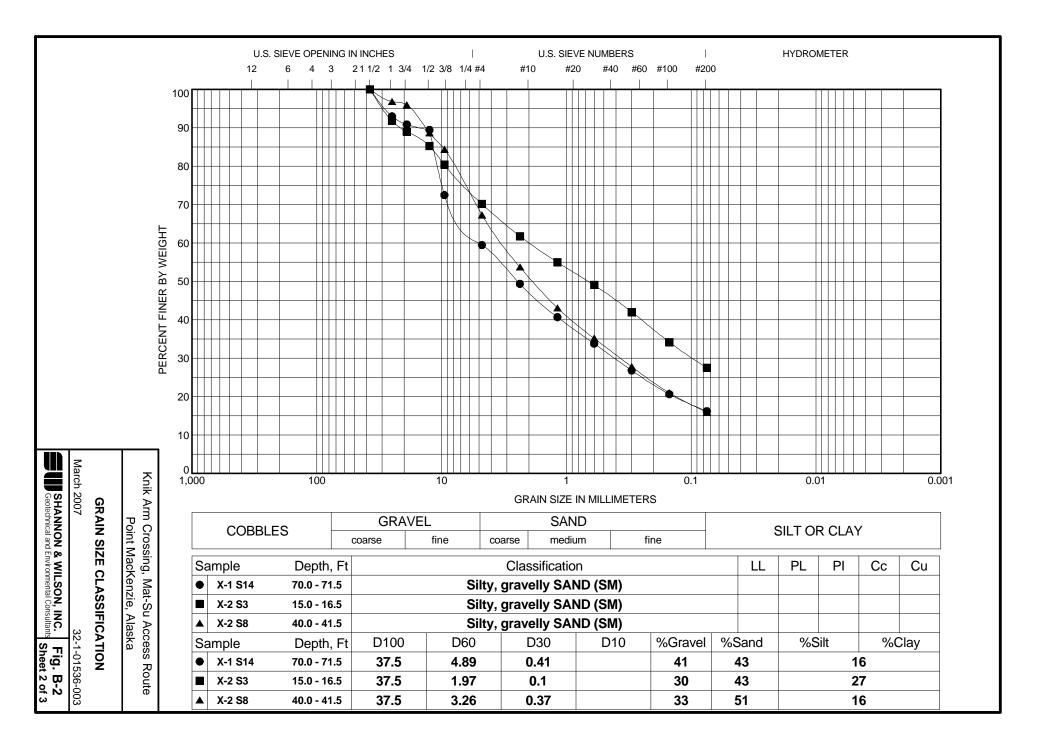


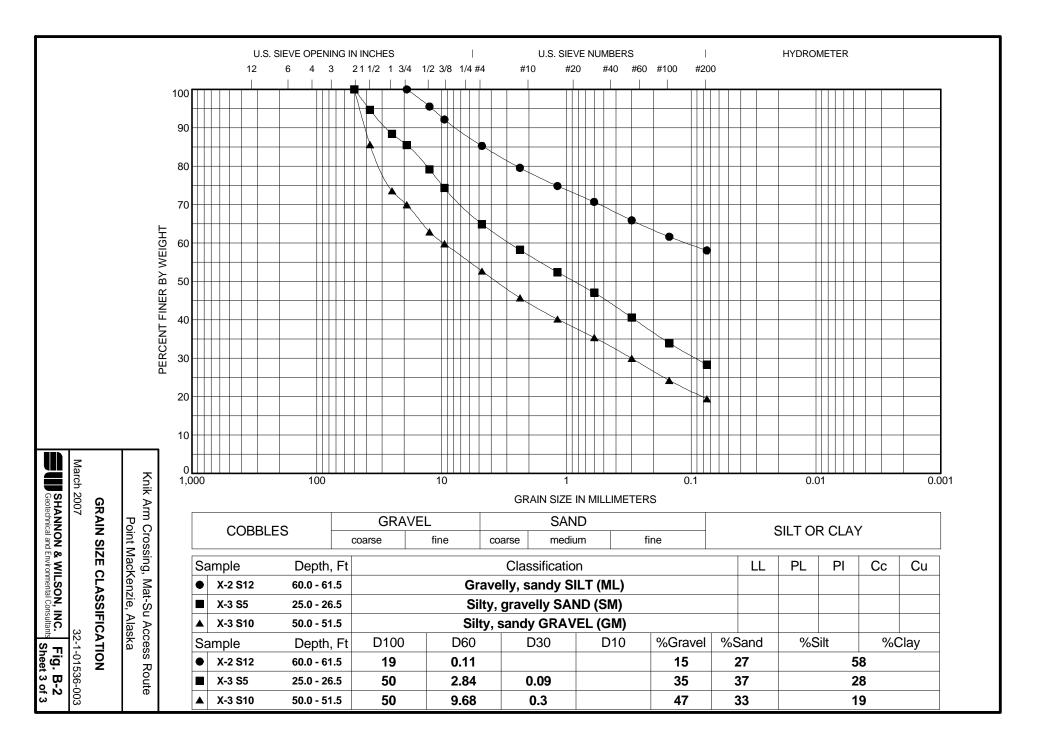


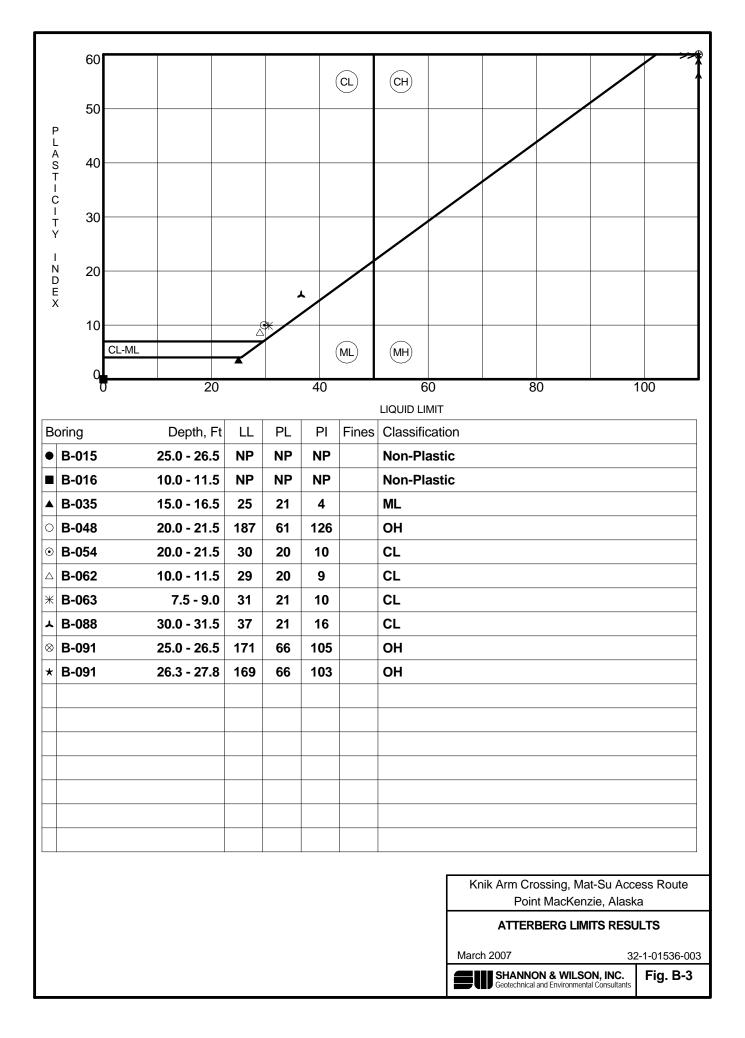












APPENDIX C

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMETAL REPORT

32-1-01536-003

Attachment to 32-1-01536-003

Date:	March 2007
To:	PND Engineering
Re:	Knik Arm Crossing, Mat-Su Access Route

Important Information About Your Geotechnical/Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors, which were considered in the development of the report, have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.